GOALI: Manufacturing USA: Determining the Role of Nanoscale Physics in the Microscale Selective Laser Sintering Process using a Multiscale Computational Modeling Approach

目标:美国制造:使用多尺度计算建模方法确定纳米物理在微尺度选择性激光烧结过程中的作用

基本信息

  • 批准号:
    1728313
  • 负责人:
  • 金额:
    $ 39.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Flexible electronic devices are of great interest due to the rapid expansion of wearable devices for health monitoring and the rise of the Internet-of-Things. One key factor limiting their development is the integration of diverse high-quality, silicon-based electrical components with flexible substrates. This integration is difficult because the small electrical connections needed to interface the silicon chips with flexible substrates cannot be fabricated using existing manufacturing processes. A new process called microscale selective laser sintering (microscale-SLS) has been developed which offers the potential to overcome this manufacturing limitation by successfully sintering (fusing) nanoscale particles to create complex, three-dimensional, metal parts with micron-scale resolution on almost any substrate. Currently the commercial viability of the process is limited by a lack of understanding of the underlying physics governing the sintering process, and an inability to accurately model the process outcomes. This Grant Opportunities for Academic Liaison with Industry (GOALI) research project will overcome this limitation by developing fundamental science regarding the impact of nanoscale physics on the mass and energy transfer within the microscale-SLS process, and ultimately the final part integrity. As this project is an industry-university collaborative effort between NXP USA and the University of Texas Austin (UTA), it will provide both educational experiences and industrial traineeships for graduate and undergraduate students. A particular focus on providing opportunities and training to students from underrepresented backgrounds in engineering will be pursued through senior design projects and the Nanomanufacturing Systems for Mobile Computing and Mobile Energy Technologies (NASCENT) Center's High School Fellows program.The research objective of the project is to understand the fundamental science regarding mechanisms by which thin layers of nanoparticles (NPs) are selectively laser sintered to realize 3D structures with resolutions of around one micron. The central hypothesis is that nanoscale effects such as surface diffusion, near-field radiation, and light scattering dominate the part-formation process in microscale-SLS, and therefore must be considered to accurately model microscale-SLS part formation. The specific aims of this project are to determine the mechanisms for (1) NP reshaping during the microscale-SLS process, (2) light penetration/absorption in the NP powder bed, and (3) heat transfer within the NP powder bed, and (4) to determine the relationship between NP-level mechanisms and continuum-level parameters for modeling part formation. A multiscale computational modeling approach for the macroscale selective laser sintering process (MCM-SLS) will be leveraged to construct a model of the microscale-SLS part formation process. It is expected that the development of accurate models of the microscale-SLS process will have a positive impact on the manufacturing of three-dimensional microscale interconnect structures by (1) reducing the time required to determine the optimal process parameters for microscale-SLS parts, (2) improving the scientific understanding of how part design affects part quality/yield, and (3) allowing designers to estimate part quality (strength, shape, conductivity, etc.) before fabrication. The computational models will be validated in collaboration with NXP USA using a prototype microscale-SLS system at their facilities.
灵活的电子设备引起了人们的极大兴趣,这是因为可穿戴设备的快速扩展用于健康监测和The-Things Internet的兴起。限制其发展的一个关键因素是将基于硅的高质量电气组件与柔性底物的整合。这种集成很困难,因为无法使用现有的制造工艺将硅芯片与柔性基材连接到硅芯片所需的小电连接。已经开发了一个称为Microscale选择性激光烧结(微观SLS)的新过程,该过程通过成功烧结(Fusing)纳米级颗粒来克服这种制造限制的潜力,以创建复杂的,三维的金属零件,几乎所有底物都可以分辨出微米尺度的分辨率。目前,该过程的商业生存能力受到对烧结过程的基本物理学的了解的限制,并且无法准确地对过程结果进行建模。这项与行业联络的赠款机会(Goali)研究项目将通过开发有关纳米级物理学对微观和能源转移在微观SLS过程中的质量和能量转移的影响的基础科学来克服这一局限性,最终是最终的完整性。由于该项目是NXP USA和德克萨斯大学奥斯汀大学(UTA)之间的行业合作努力,因此它将为研究生和本科生提供教育经验和工业实习生。特定的重点是通过高级设计项目和移动计算和移动能源技术的纳米制造系统(Nascent)中心的高中研究员计划来为来自代表性不足的工程背景的学生提供机会和培训。该项目的研究目的是了解该项目的研究目标。微米。中心假设是纳米级效应,例如表面扩散,近场辐射和光散射占主导地位的零件形成过程,因此必须考虑准确地对微观SLS部分形成进行模拟。该项目的具体目的是确定(1)在显微镜SLS过程中进行(1)NP重塑的机制,(2)NP粉末床中的光穿透/吸收,以及(3)NP粉末床内的热传递,(4)确定NP级别机制之间的关系和连续性级别的零件组合物之间的关系。宏观尺度选择性激光烧结过程(MCM-SLS)的多尺度计算建模方法将被利用以构建微观SLS零件形成过程的模型。可以预期,通过(1)减少确定显微镜 - SLS部分最佳过程参数所需的时间,(2)对部分设计的科学理解会影响零件质量/收益(3)允许设计,允许设计(3)允许设计(3)允许设计(3)允许设计,从而提高了良好的设计,允许设计,请允许(3)允许设计(3)允许设计,从而提高了质量(3),从而提高了(3),从而提高了(3),从而提高了(3),从而允许设计(3)允许设计,从而提高了质量(3)允许设计,从而质量(3)允许设计,从而提高了质量(3),因此预计,微观SLS过程的准确模型将对三维显微镜互连结构产生积极影响。计算模型将在其设施中使用原型微观SLS系统与NXP USA合作验证。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Slot-Die Coating Operability Window for Nanoparticle Bed Deposition in a Microscale Selective Laser Sintering Tool
  • DOI:
    10.1115/1.4049668
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Behera, Dipankar;Liao, Daniel;Cullinan, Michael A.
  • 通讯作者:
    Cullinan, Michael A.
Uncertainty Analysis of Near-Field Thermal Energy Transfer within Nanoparticle Packing
纳米颗粒填料内近场热能传递的不确定性分析
Experimental Study of the Subsystems in a Microscale Additive Manufacturing Process
微尺度增材制造过程中子系统的实验研究
  • DOI:
    10.1007/s11837-018-3223-3
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Roy, Nilabh K.;Behera, Dipankar;Dibua, Obehi G.;Foong, Chee S.;Cullinan, Michael
  • 通讯作者:
    Cullinan, Michael
Fast Trajectory Tracking of a Flexure-Based, Multiaxis Nanopositioner With 50-mm Travel
  • DOI:
    10.1109/tmech.2018.2871162
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Roy, Nilabh K.;Cullinan, Michael A.
  • 通讯作者:
    Cullinan, Michael A.
Near-field plasmonics of gold nanoparticles in dielectric media
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Cullinan其他文献

Characterization of porosity in periodic 3D nanostructures using spectroscopic scatterometry
使用光谱散射测量法表征周期性 3D 纳米结构的孔隙率
Response Speed Characterization of a Thermally Actuated Programmable Metamaterial
热驱动可编程超材料的响应速度表征
  • DOI:
    10.1109/jmems.2023.3332595
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chenyang Luo;Jonathan B. Hopkins;Michael Cullinan
  • 通讯作者:
    Michael Cullinan
Manufacturing and metrology of 3D holographic structure nanopatterns in roll-to-roll fabrication
卷对卷制造中 3D 全息结构纳米图案的制造和计量
  • DOI:
    10.1117/12.3010004
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barbara Groh;Kwon Sang Lee;Luis Aguirre;Michael Cullinan;Chih
  • 通讯作者:
    Chih

Michael Cullinan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Cullinan', 18)}}的其他基金

PFI-TT: Microscale Laser Sintering to Fabricate High-Density 3D Structures
PFI-TT:微型激光烧结制造高密度 3D 结构
  • 批准号:
    2141044
  • 财政年份:
    2022
  • 资助金额:
    $ 39.14万
  • 项目类别:
    Standard Grant
FMRG: Cyber: Manufacturing USA: Cyber-Enabled, High-Throughput Manufacturing of Multi-Material, 3D Nanostructures
FMRG:网络:美国制造:网络支持的多材料、3D 纳米结构的高通量制造
  • 批准号:
    2229036
  • 财政年份:
    2022
  • 资助金额:
    $ 39.14万
  • 项目类别:
    Continuing Grant
I-Corps: Microscale Selective Laser Sintering Process
I-Corps:微型选择性激光烧结工艺
  • 批准号:
    2140503
  • 财政年份:
    2021
  • 资助金额:
    $ 39.14万
  • 项目类别:
    Standard Grant

相似国自然基金

新发展格局背景下参与全球价值链对中国制造业空间集聚的影响机制、效应评估及政策研究
  • 批准号:
    42301202
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
数字制造业集聚对供应链中断的缓冲机制研究
  • 批准号:
    72303034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
政府补贴对制造业绿色创新韧性的影响机理、效果评估与政策优化研究
  • 批准号:
    72304141
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
先进制造业服务化组织障碍成因及调节机制研究
  • 批准号:
    72302069
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
创新链管理视角下高端装备制造业开放创新的风险识别、评估与治理对策研究
  • 批准号:
    72304262
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FMRG: Cyber: Manufacturing USA: Material-on-demand manufacturing through convergence of manufacturing, AI and materials science
FMRG:网络:美国制造:通过制造、人工智能和材料科学的融合实现按需制造材料
  • 批准号:
    2328395
  • 财政年份:
    2024
  • 资助金额:
    $ 39.14万
  • 项目类别:
    Standard Grant
FMRG: Cyber: Manufacturing USA: NextG-Enabled Manufacturing of the Future (NextGEM)
FMRG:网络:美国制造:支持 NextG 的未来制造 (NextGEM)
  • 批准号:
    2328260
  • 财政年份:
    2024
  • 资助金额:
    $ 39.14万
  • 项目类别:
    Standard Grant
CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
  • 批准号:
    2239307
  • 财政年份:
    2023
  • 资助金额:
    $ 39.14万
  • 项目类别:
    Standard Grant
FMRG: Cyber: Manufacturing USA: Manufacturing of Next-Generation Perovskite Semiconductors at Scale
FMRG:网络:美国制造:大规模制造下一代钙钛矿半导体
  • 批准号:
    2328010
  • 财政年份:
    2023
  • 资助金额:
    $ 39.14万
  • 项目类别:
    Standard Grant
ERI: Manufacturing USA: Additive Manufacturing of Iron based Shape Memory Alloy
ERI:美国制造:铁基形状记忆合金的增材制造
  • 批准号:
    2301766
  • 财政年份:
    2023
  • 资助金额:
    $ 39.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了