RUI: Probing the Mechanotransduction of Disturbed Flow in Brain Vasculature
RUI:探讨脑脉管系统扰动流的机械转导
基本信息
- 批准号:1728239
- 负责人:
- 金额:$ 29.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aneurysms in blood vessels of the head pose a substantial health risk to the general population. The vast majority of brain aneurysms form at branch points and junctions of arteries, where blood flow is 'disturbed' by sudden changes in its flow path. Disturbed blood flow alters the mechanical force exerted on cells lining cerebral arteries, though the contribution of these forces to aneurysm formation is not fully known. Determining the effect of flow-induced forces on cells inside a living brain is difficult, necessitating the development of model vascular systems that reproduce what happens in life. This model must mimic the unique the 'blood-brain barrier' that changes how the brain vasculature works compared to vessels in the rest of the body. The research will use such a model to determine the effect of disturbed flow on cellular processes associated with aneurysm formation. The project will yield a better understanding of the effects of disturbed blood flow in the brain, and suggest molecular targets that may prevent aneurysm formation in at-risk patients. The research will train undergraduates and graduate students to perform laboratory work. High school students from Camden, NJ will be recruited to work in the laboratory. The grant will add to Rowan University's effort to build a research program in southern New Jersey. The overall goal of this project is to determine the biological response of cerebral endothelial cells to disturbed fluid flow and to investigate the molecular mechanisms underlying this response. The spatial correlation between saccular aneurysms and arterial bifurcations is striking, lending credence to the accepted view that disturbed flow at the sites of bifurcation contributes to the formation and progression of aneurysms. These studies rely on a three-dimensional, in vitro model of a cerebral artery bifurcation. Microparticle image velocimetry is used in combination with computational fluid dynamics to characterize the shear stress profiles exerted on the endothelium within this model. Gene and protein expression of matrix remodeling markers by endothelial cells will be measured in response to the applied fluid flow regimes. Studies will test the hypothesis that cd44 and its downstream effectors function as a mechanosensor of disturbed flow in cerebral vasculature. The central hypothesis is that disturbed flow-mediated activation of CD44 results in tight junction disruption and matrix metalloproteinase activation through RhoA GTPase. Identification of the mechanism responsible for transducing disturbed flow not only advances the fundamental understanding of how cells respond to mechanical forces, but also clarifies why intracranial aneurysms form in proximity to arterial bifurcations.
头部血管中的动脉瘤对普通人群构成了重大健康风险。绝大多数大脑动脉瘤在分支点和动脉连接处形成,其中血流被其流动路径突然变化“干扰”。受干扰的血流改变了施加在脑动脉内部细胞上的机械力,尽管这些力对动脉瘤形成的贡献尚不完全清楚。确定流动诱导的力对活大脑内部细胞的影响很困难,因此需要开发模型的血管系统,以重现生活中发生的事情。该模型必须模仿独特的“血脑屏障”,以改变脑脉管系统与身体其他部位相比的工作方式。 该研究将使用这种模型来确定流动障碍对与动脉瘤形成相关的细胞过程的影响。该项目将更好地了解大脑中血流的影响,并提出可能阻止处于危险患者的动脉瘤形成的分子靶标。这项研究将培训本科生和研究生进行实验室工作。来自新泽西州卡姆登市的高中生将被招募在实验室工作。 该赠款将增加罗恩大学在新泽西州南部建立研究计划的努力。该项目的总体目标是确定脑内皮细胞对流体流动的生物学反应,并研究该反应的分子机制。寒冷动脉瘤和动脉分叉之间的空间相关性令人震惊,这使公认的观点借鉴了可接受的观点,即扰乱分叉部位流动的流动有助于动脉瘤的形成和进展。这些研究依赖于脑动脉分叉的三维体外模型。 微粒图像速度法与计算流体动力学结合使用,以表征该模型内皮上施加的剪切应力曲线。响应于施加的流体流动方案,将测量由内皮细胞的基因重塑标记的基因和蛋白质表达。研究将检验以下假设:CD44及其下游效应子在脑脉管系统中起干扰流动的机械传感器。中心假设是,流动介导的CD44激活导致紧密的连接破坏和基质金属蛋白酶通过RhoA GTPase激活。识别负责转导干扰流动的机制,不仅可以提高对细胞如何反应机械力的基本理解,而且还阐明了为什么颅内动脉瘤形成了为什么在动脉分叉附近形成。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hyaluronan Disrupts Cardiomyocyte Organization within 3D Fibrin-Based Hydrogels
- DOI:10.1016/j.bpj.2019.02.018
- 发表时间:2019-04-02
- 期刊:
- 影响因子:3.4
- 作者:Bouhrira, Nesrine;Galie, Peter A.;Janmey, Paul A.
- 通讯作者:Janmey, Paul A.
Multivascular networks and functional intravascular topologies within biocompatible hydrogels.
- DOI:10.1126/science.aav9750
- 发表时间:2019-05-03
- 期刊:
- 影响因子:0
- 作者:Grigoryan B;Paulsen SJ;Corbett DC;Sazer DW;Fortin CL;Zaita AJ;Greenfield PT;Calafat NJ;Gounley JP;Ta AH;Johansson F;Randles A;Rosenkrantz JE;Louis-Rosenberg JD;Galie PA;Stevens KR;Miller JS
- 通讯作者:Miller JS
Disturbed flow disrupts the blood-brain barrier in a 3D bifurcation model
- DOI:10.1088/1758-5090/ab5898
- 发表时间:2020-04-01
- 期刊:
- 影响因子:9
- 作者:Bouhrira, Nesrine;Deore, Brandon J.;Galie, Peter A.
- 通讯作者:Galie, Peter A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Galie其他文献
Peter Galie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Galie', 18)}}的其他基金
I-Corps: A conductive scaffold with a tunable mechanical and biochemical environment for spinal cord injury repair
I-Corps:具有可调机械和生化环境的导电支架,用于脊髓损伤修复
- 批准号:
2337356 - 财政年份:2023
- 资助金额:
$ 29.89万 - 项目类别:
Standard Grant
Astrocyte Mechanobiology Following Central Nervous System Injury Revealed By Magnetically Active Hydrogels
磁活性水凝胶揭示中枢神经系统损伤后的星形胶质细胞力学生物学
- 批准号:
2223318 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Standard Grant
The Impact of the SARS-CoV-2 Virus on the Integrity of the Blood-brain Barrier
SARS-CoV-2 病毒对血脑屏障完整性的影响
- 批准号:
2034780 - 财政年份:2020
- 资助金额:
$ 29.89万 - 项目类别:
Standard Grant
相似国自然基金
基于级联式卤素离子梯度钙钛矿单晶的PIN结型高能量分辨率伽马射线探测器
- 批准号:12375306
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
高性能有机光伏器件中电声耦合的探测与调控
- 批准号:52320105003
- 批准年份:2023
- 资助金额:210 万元
- 项目类别:国际(地区)合作与交流项目
SiC基石墨烯超表面紫外-太赫兹双波段探测器研究
- 批准号:62304187
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二维杂化双钙钛矿分子铁电体的设计合成与自驱动偏振光电探测性能研究
- 批准号:22305209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向水下崎岖地形辅助探测的仿生蛇机器人流固耦合与自适应控制研究
- 批准号:62303117
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Direct and Quantitative Probing of Desmosome Mechanotransduction
桥粒力转导的直接定量探测
- 批准号:
10713124 - 财政年份:2023
- 资助金额:
$ 29.89万 - 项目类别:
Probing ER stress signaling with orthogonal control of receptor oligomerization
通过受体寡聚化的正交控制探索内质网应激信号传导
- 批准号:
10665915 - 财政年份:2022
- 资助金额:
$ 29.89万 - 项目类别:
Integrative Approaches for Probing Cell Mechanotransduction in Health and Disease
探索健康和疾病中细胞力转导的综合方法
- 批准号:
10372327 - 财政年份:2018
- 资助金额:
$ 29.89万 - 项目类别:
Integrative Approaches for Probing Cell Mechanotransduction in Health and Disease
探索健康和疾病中细胞力转导的综合方法
- 批准号:
9769064 - 财政年份:2018
- 资助金额:
$ 29.89万 - 项目类别:
Integrative Approaches for Probing Cell Mechanotransduction in Health and Disease
探索健康和疾病中细胞力转导的综合方法
- 批准号:
10241304 - 财政年份:2018
- 资助金额:
$ 29.89万 - 项目类别: