Astrocyte Mechanobiology Following Central Nervous System Injury Revealed By Magnetically Active Hydrogels

磁活性水凝胶揭示中枢神经系统损伤后的星形胶质细胞力学生物学

基本信息

  • 批准号:
    2223318
  • 负责人:
  • 金额:
    $ 29.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This award will support work to improve our understanding of the mechanisms underlying scar formation in glial cells. Injury to the central nervous system often results in life-long disability. Patients with spinal cord injury or traumatic brain injury may suffer severe loss of function. Like other regions in the body, the mechanical stiffness of central nervous tissue changes after an injury. This affects both the neurons that transmit signals as well as supporting cell types in the brain and spinal cord, which are called glial cells. One type of glial cell, called an astrocyte, contributes to the formation of a glial scar. The scar inhibits the regeneration of neurons needed for functional recovery following an injury. Currently, the effects of the dynamically changing stiffness of the tissue on the function of the astrocytes is unknown. The work done with this grant will alter the stiffness of astrocytes’ surroundings using magnetism to understand how the cells contribute to glial scar formation. Eventually, these results can lead to new treatments for restoring function following spinal cord injury. Additionally, the research will be supplemented with an early childhood education program called “Science and Movement” that will introduce children to the ways in which scientists and engineers use magnetism.Magnetically active hydrogels provide a new means to interrogate time and spatial varying mechanical properties in three-dimensional microenvironments. The changes are fast and reversible, and studies indicate that cells respond to the altered mechanical properties rapidly (within seconds). The experiments will characterize the dynamic changes to the mechanical properties of the spinal cord following contusion injury using an ex vivo slice model, and then use magnetically active hydrogels to mimic these changes in vitro to interrogate astrocyte mechanobiology. Experiments will focus on the transcriptomic changes of the astrocytes in order to better understand the mechanisms underlying the formation of a glial scar. These studies will involve both temporal and spatial gradients of viscoelastic mechanics, informed by the results of the mechanical testing of the ex vivo spinal cord injury model. Overall, this work will improve our understanding of astrocyte mechanobiology and potentially lead to new treatments to repair spinal cord injury.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将支持我们对神经胶质细胞中疤痕形成的机制的理解的工作。中枢神经系统的伤害通常会导致终身残疾。脊髓损伤或脑外伤的患者可能会严重丧失功能。像体内其他区域一样,受伤后中枢神经组织的机械刚度也会变化。这会影响传输信号的神经元以及支持大脑和脊髓中的细胞类型,这些神经元称为神经胶质细胞。一种称为星形胶质细胞的神经胶质细胞有助于形成神经胶质疤痕。疤痕抑制了受伤后功能恢复所需的神经元的再生。当前,组织动态变化的刚度对星形胶质细胞功能的影响尚不清楚。用这项赠款完成的工作将使用磁性改变星形胶质细胞周围环境的刚度,以了解细胞如何促进神经胶质疤痕的形成。最终,这些结果可能会导致脊髓损伤后恢复功能的新治疗方法。此外,该研究将补充一项名为“科学和运动”的幼儿教育计划,该计划将向儿童介绍科学家和工程师使用磁性的方式。磁性活性水凝胶为三维微环境提供了一种新的方法来询问时间和空间变化的机械性能。变化是快速和可逆的,研究表明细胞迅速(在几秒钟内)迅速对机械性能的改变响应。实验将表征使用离体切片模型挫伤损伤后脊髓机械性能的动态变化,然后使用磁性活性水凝胶模仿体外这些变化以询问星形胶质细胞机制。实验将集中在星形胶质细胞的转录组变化上,以便更好地了解形成神经胶质疤痕的机制。这些研究将涉及粘弹性机制的临时梯度和空间梯度,这是由离体脊髓损伤模型的机械测试结果所启示的。总体而言,这项工作将提高我们对星形胶质细胞机制的理解,并有可能导致修复脊髓损伤的新治疗方法。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估标准来评估值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Matching mechanical heterogeneity of the native spinal cord augments axon infiltration in 3D-printed scaffolds
  • DOI:
    10.1016/j.biomaterials.2023.122061
  • 发表时间:
    2023-02-25
  • 期刊:
  • 影响因子:
    14
  • 作者:
    Tran,Kiet A.;DeOre,Brandon J.;Galie,Peter A.
  • 通讯作者:
    Galie,Peter A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Galie其他文献

Peter Galie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Galie', 18)}}的其他基金

I-Corps: A conductive scaffold with a tunable mechanical and biochemical environment for spinal cord injury repair
I-Corps:具有可调机械和生化环境的导电支架,用于脊髓损伤修复
  • 批准号:
    2337356
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
The Impact of the SARS-CoV-2 Virus on the Integrity of the Blood-brain Barrier
SARS-CoV-2 病毒对血脑屏障完整性的影响
  • 批准号:
    2034780
  • 财政年份:
    2020
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
RUI: Probing the Mechanotransduction of Disturbed Flow in Brain Vasculature
RUI:探讨脑脉管系统扰动流的机械转导
  • 批准号:
    1728239
  • 财政年份:
    2017
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant

相似国自然基金

基于机械生物学的疏松牙槽骨低损伤、致密化种植备洞方法与应用评价
  • 批准号:
    52175422
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于DNA机器分子力谱的机械力诱导DNA结构多样性及其生物学效应研究
  • 批准号:
    22174107
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
低载荷机械振动改善糖尿病及其骨质疏松并发症的力学生物学机理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基底刚度耦合机械拉伸促进肺泡上皮细胞分化的力学生物学机制研究
  • 批准号:
    11902007
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
B淋巴细胞机械力感知生物学:分子机制及应用
  • 批准号:
    81961130394
  • 批准年份:
    2019
  • 资助金额:
    50 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

REU Site: Mechanobiology at VCU
REU 网站:VCU 机械生物学
  • 批准号:
    2349211
  • 财政年份:
    2024
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
ActBio: Exploiting the Parallels between Active Matter and Mechanobiology
ActBio:利用活性物质与机械生物学之间的相似之处
  • 批准号:
    EP/Y033981/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Research Grant
CellMechBio: the influence of cellular mechanobiology on organ development
CellMechBio:细胞力学生物学对器官发育的影响
  • 批准号:
    FT230100352
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    ARC Future Fellowships
Creating an All-optical, Mechanobiology-guided, and Machine-learning-powered High-throughput Framework to Elucidate Neural Dynamics
创建全光学、机械生物学引导和机器学习驱动的高通量框架来阐明神经动力学
  • 批准号:
    2308574
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
CAREER: Mechanobiology of Load-bearing Interfaces
职业:承载界面的力学生物学
  • 批准号:
    2239665
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了