Direct and Quantitative Probing of Desmosome Mechanotransduction

桥粒力转导的直接定量探测

基本信息

  • 批准号:
    10713124
  • 负责人:
  • 金额:
    $ 37.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Intercellular adhesive junctions, including desmosomes and adherens junctions, connect epithelial cells within a tissue to provide mechanical integrity, regulate cell sorting and migration, and control chemical signals that further instruct cell decisions. In particular, desmosomes resist mechanical stress and respond to mechanical cues to regulate complex cell behaviors to promote differentiation, facilitate migration and wound healing, and mediate other functions critical in development and in diseases of many tissues, including the skin and heart. While significant progress has been made identifying potential load-bearing elements within desmosomes, a huge knowledge gap exists about their roles in epithelial mechanics and mechanotransduction. Specifically, the mechanisms of force regulation across the desmosome-intermediate filament linkage are poorly understood. There is limited direct evidence for when and even whether the molecular components of desmosomes bear mechanical loads, the first step towards mechanotransduction. More importantly, still unaddressed is whether specific desmosome components act as mechanosensors that determine the strength and duration of chemical signaling pathways critical in adapting to mechanical stresses in tissues. Our previous studies showed the capacity of desmosome-intermediate filament linkage in regulating cell mechanics, a role that has long been regarded to belong solely to adherens junctions. This suggests the potential for desmosomal components to participate in force regulation. In this MIRA project, building on these findings and leveraging a newly developed single cell-cell adhesion interrogation platform, we will examine the important, but less studied, role that desmosomes play in epithelial mechanics and in mechanotransduction. We will focus on two major research thrust areas: 1) investigate the role desmosome plays in maintaining the mechanical integrity of epithelial cell- cell junctions and 2) determine its potential in transducing mechanical cues at the junction in coordination with mechanosensitive molecules at the adherens junctions and the actin network. Through a series of studies on epithelial cells with desmosomal components harboring loss- and gain-of-function mutations, we will quantify the contribution from each desmosomal protein in maintaining epithelial mechanical integrity in stressed conditions. We will answer the question: How does actin-based contractility affect desmosome regulation of tension within actin-based adhesive networks? We anticipate providing the first direct observation of desmosome serving as a mechanotransduction site at the cell-cell junction. The proposed studies will enhance our understanding of how desmosomes coordinate chemical and transcriptional pathways in response to mechanical tension in the epithelia, lay the groundwork for similar studies of desmosome mechanosensing in other tissues, and ultimately provide new knowledge to aid in developing treatments for disorders resulting from interference with these adhesive junctions and their mechanosensing pathways.
项目摘要 细胞间的粘合剂连接,包括脱染体和粘附连接处,连接上皮细胞 提供机械完整性,调节细胞分类和迁移的组织,并控制化学信号 进一步指导细胞决策。尤其是,脱糖体抵抗机械应力并响应机械应力 提示调节复杂细胞行为以促进分化,促进迁移和伤口愈合,以及 介导其他在发育和许多组织(包括皮肤和心脏)的疾病中至关重要的功能。 尽管已经取得了重大进展,从而确定了脱糖体内的潜在承载元素,但 关于它们在上皮力学和机械转移中的作用的巨大知识差距。具体来说, 对脱骨体中间丝连接的力调节机制知之甚少。 直接证据表明何时何地,脱骨体的分子成分是否轴承 机械载荷是迈向机械转导的第一步。更重要的是,仍然没有解决 特定的脱骨组成分充当确定化学强度和持续时间的机械传感器 信号通路至关重要,以适应组织中的机械应力。我们以前的研究表明 在调节细胞力学中,脱骨体中间灯丝连接的能力,长期以来一直是 被视为仅属于粘附连接。这表明了脱染色体成分的潜力 参加有效调节。在这个Mira项目中,基于这些发现并利用了新开发的 单细胞细胞粘附询问平台,我们将研究重要但所研究的角色 在上皮力学和机械转导的脱糖体中发挥作用。我们将专注于两项重大研究 推力区域:1)研究脱骨小体在维持上皮细胞的机械完整性方面的作用 细胞连接和2)确定其在与与协调的连接处传输机械提示方面的潜力 粘附连接和肌动蛋白网络处的机械敏感分子。通过一系列研究 具有具有损失和功能收益突变的脱染色体成分的上皮细胞,我们将量化 每种脱糖体蛋白在应力条件下维持上皮机械完整性方面的贡献。 我们将回答以下问题:基于肌动蛋白的收缩力如何影响内部张力的触角调节 基于肌动蛋白的粘附网络?我们预计将提供第一个直接观察到的脱斑体作为一个 细胞 - 细胞连接处的机械转导位点。拟议的研究将增强我们对如何的理解 脱糖体协调化学和转录途径,以响应于机械张力 上皮,为其他组织中的脱乳小体机械感应的类似研究奠定了基础,最终 提供新知识,以帮助开发因干扰这些疾病而导致的疾病 粘合剂连接及其机械感应途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruiguo Yang其他文献

Ruiguo Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruiguo Yang', 18)}}的其他基金

A Force-controlled Probe Based Platform for Single-Cell Biomolecular Delivery
基于力控探针的单细胞生物分子传递平台
  • 批准号:
    8780634
  • 财政年份:
    2012
  • 资助金额:
    $ 37.7万
  • 项目类别:

相似国自然基金

上皮层形态发生过程中远程机械力传导的分子作用机制
  • 批准号:
    31900563
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
  • 批准号:
    31701215
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Basis and Function of Lateral Assembly of Cadherin Molecules in Adhesive Junctions of Humans and Model Organisms
人类和模型生物粘附连接中钙粘蛋白分子横向组装的基础和功能
  • 批准号:
    10715056
  • 财政年份:
    2023
  • 资助金额:
    $ 37.7万
  • 项目类别:
Investigating the epidermal microenvironment in melanoblast migration and invasion: a novel approach to understanding invasive melanoma
研究黑色素细胞迁移和侵袭的表皮微环境:一种了解侵袭性黑色素瘤的新方法
  • 批准号:
    10537221
  • 财政年份:
    2023
  • 资助金额:
    $ 37.7万
  • 项目类别:
Polarity proteins and intestinal mucosal responses to inflammation and injury
极性蛋白和肠粘膜对炎症和损伤的反应
  • 批准号:
    10442201
  • 财政年份:
    2022
  • 资助金额:
    $ 37.7万
  • 项目类别:
Shear stress-mediated Notch1 activation by intrinsic cell adhesive and cytoskeletal activity
通过内在细胞粘附和细胞骨架活性剪切应力介导的 Notch1 激活
  • 批准号:
    10389629
  • 财政年份:
    2022
  • 资助金额:
    $ 37.7万
  • 项目类别:
Shear stress-mediated Notch1 activation by intrinsic cell adhesive and cytoskeletal activity
通过内在细胞粘附和细胞骨架活性剪切应力介导的 Notch1 激活
  • 批准号:
    10683710
  • 财政年份:
    2022
  • 资助金额:
    $ 37.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了