Conference on Geometric Analysis
几何分析会议
基本信息
- 批准号:1707760
- 负责人:
- 金额:$ 2.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is to support U.S. participants in the International Collaborative Research Group Conference on Geometric Analysis, to be held at the Pacific Institute for the Mathematical Sciences (PIMS), University of British Columbia, Canada from July 24 to July 28, 2017. Generally speaking, geometric analysis involves using analytic methods to solve problems in differential geometry and general relativity. This workshop will bring together mathematicians, including top experts in the field, to communicate recent progress and to promote interaction and collaboration among the participants. In particular, the goals of the conference are to disseminate new advances in geometric analysis, to contribute to the training of graduate students, and to bring a large group of mathematicians to exchange and to incubate new mathematical ideas. To realize these goals, junior researchers (including postdoctoral fellows and graduate students) and researchers from various under-represented groups are especially encouraged to apply and will be given priority for financial support from the organizing committee.The workshop will bring leading experts from all over the world to present the new results and/or surveys of current progresses in geometric analysis, in particular, from the following subfields: (1) Analysis of geometric PDE including curvature flows (e.g., power of Gauss curvature flow, Ricci flow, gradient Ricci solitons, and manifolds with lower Ricci curvature bound); (2) Kahler-Einstein metrics and the Kahler-Ricci flow (e.g., singular Kahler metrics, the Gromov-Hausdorff limits of Kahler manifolds, the regularity and weak solutions of Kahler-Ricci flow, and Kahler-Ricci solitons); (3) Minimal submanifolds and mean curvature flow (e.g., special Lagrangian submanifolds in mirror symmetry, min-max theory from the proof of Willmore conjecture, and the formation of singularities of mean curvature flow); and (4) Mathematical general relativity (e.g., space-like hypersurfaces with constant mean curvature, the center of mass, and the nonlinear gluing approach). Since 2010 PIMS Workshop on Geometric Analysis, there are many exciting new results and new techniques in these fields, and the conference will have about 25 speakers discussing these advances. The abstract of talks and videos from the workshop will be posted on the conference webpage http://www.pims.math.ca/scientific-event/170724-ccga
该奖项旨在支持美国国际合作研究小组几何分析会议的参与者,该会议将于2017年7月28日至2017年7月28日在加拿大不列颠哥伦比亚大学的太平洋数学研究所(PIMS)举行。一般而言,几何分析涉及使用分析方法来解决差异质量和一般相关性中的分析方法。该研讨会将汇集包括该领域的高级专家在内的数学家,以交流最近的进步并促进参与者之间的互动和协作。 特别是,会议的目标是传播几何分析的新进步,为研究生的培训做出贡献,并带来一大批数学家进行交流和孵化新的数学思想。 To realize these goals, junior researchers (including postdoctoral fellows and graduate students) and researchers from various under-represented groups are especially encouraged to apply and will be given priority for financial support from the organizing committee.The workshop will bring leading experts from all over the world to present the new results and/or surveys of current progresses in geometric analysis, in particular, from the following subfields: (1) Analysis of geometric PDE including curvature流(例如,高斯曲率流的功率,RICCI流动,梯度RICCI孤子和具有较低RICCI曲率结合的歧管); (2)Kahler-Einstein指标和Kahler-ricci流(例如,奇异的Kahler指标,Kahler歧管的Gromov-Hausdorff限制,Kahler-Ricci流的规律性和弱解决方案,以及Kahler-Ricci Solitons的规律性和弱解决方案); (3)最小的亚策略和平均曲率流(例如,镜子对称性中的特殊拉格朗日亚曼叶,来自威尔莫尔猜想证明的最小 - 最大理论以及平均曲率流的奇异性的形成); (4)数学一般相对论(例如,具有恒定平均曲率的空格性超曲面,质量中心和非线性胶合方法)。自2010年PIMS几何分析研讨会以来,这些领域有许多令人兴奋的新结果和新技术,并且会议将有大约25位发言人讨论这些进步。研讨会的会谈和视频摘要将发布在会议网页上http://www.pims.math.ca/scientific-event/170724-ccca
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Yuan其他文献
Generation of Millimeter-Wave Ultra-Wideband Pulses Free of Strong Local Oscillation and Background
产生无强局部振荡和背景的毫米波超宽带脉冲
- DOI:
10.1109/lpt.2016.2594045 - 发表时间:
2016-11 - 期刊:
- 影响因子:2.6
- 作者:
Yu Yuan;Jiang Fan;Tang Haitao;Xu Lu;Liu Xiaolong;Dong Jianji;Zhang Xinliang - 通讯作者:
Zhang Xinliang
The correlation between intestinal mucosal lesions and hepatic dysfunction in patients without chronic liver disease
非慢性肝病患者肠黏膜病变与肝功能障碍的相关性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.6
- 作者:
Li;Mei;Jie Cai;Yu Yuan;Li;Hui;Lan Li;Kayiu Wan;Xingxiang He - 通讯作者:
Xingxiang He
Regularity for the Monge–Ampère equation by doubling
Monge-Ampère 方程的加倍正则性
- DOI:
10.1007/s00209-024-03508-6 - 发表时间:
2024 - 期刊:
- 影响因子:0.8
- 作者:
Ravi Shankar;Yu Yuan - 通讯作者:
Yu Yuan
Ligand-Free Copper Oxide Nanoparticle-CatalyzedSonogashira Coupling Reaction
无配体氧化铜纳米粒子催化的Sonogashira偶联反应
- DOI:
10.1055/s-0030-1260023 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yu Yuan;Hai;Dongbo Zhao;Li Zhang - 通讯作者:
Li Zhang
Extraction of 3D quantitative maps using EDS-STEM tomography and HAADF-EDS bimodal tomography.
使用 EDS-STEM 断层扫描和 HAADF-EDS 双峰断层扫描提取 3D 定量图
- DOI:
10.1016/j.ultramic.2020.113166 - 发表时间:
2020 - 期刊:
- 影响因子:2.2
- 作者:
Yu Yuan;Katherine MacArthur;Sean M Collins;Nicolas Brodusch;Frederic Voisard;Rafal E Dunin-Borkowski;Raynald Gauvin - 通讯作者:
Raynald Gauvin
Yu Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Yuan', 18)}}的其他基金
Fully Nonlinear Elliptic and Parabolic Equations
完全非线性椭圆和抛物线方程
- 批准号:
1800495 - 财政年份:2018
- 资助金额:
$ 2.9万 - 项目类别:
Continuing Grant
Fully nonlinear elliptic and parabolic equations
完全非线性椭圆和抛物线方程
- 批准号:
1100966 - 财政年份:2011
- 资助金额:
$ 2.9万 - 项目类别:
Continuing Grant
Regularity for Fully Nonlinear Equations
完全非线性方程的正则性
- 批准号:
0200784 - 财政年份:2002
- 资助金额:
$ 2.9万 - 项目类别:
Standard Grant
A Priori Estimates for Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的先验估计
- 批准号:
0296153 - 财政年份:2001
- 资助金额:
$ 2.9万 - 项目类别:
Continuing Grant
A Priori Estimates for Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的先验估计
- 批准号:
9970367 - 财政年份:1999
- 资助金额:
$ 2.9万 - 项目类别:
Continuing Grant
相似国自然基金
基于等几何分析的几何建模及其在结构优化设计中的应用
- 批准号:12371383
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
离散空间上的几何分析理论及其应用
- 批准号:12301064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
计及温度相关属性与几何非线性的高超声速飞行器壁板热屈曲高效分析与优化
- 批准号:12372067
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
含涂层身管失效分析的等几何FE-BE方法研究
- 批准号:12302267
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
复分析与分形几何交叉研究的几个问题
- 批准号:12371072
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 2.9万 - 项目类别:
Standard Grant
Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
- 批准号:
2406732 - 财政年份:2024
- 资助金额:
$ 2.9万 - 项目类别:
Standard Grant
Conference: Frontiers of Geometric Analysis
会议:几何分析前沿
- 批准号:
2347894 - 财政年份:2024
- 资助金额:
$ 2.9万 - 项目类别:
Standard Grant
Conference: CRM Thematic Program in Geometric Analysis
会议:几何分析中的 CRM 主题课程
- 批准号:
2401549 - 财政年份:2024
- 资助金额:
$ 2.9万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 2.9万 - 项目类别:
Standard Grant