Fully Nonlinear Elliptic Equations
完全非线性椭圆方程
基本信息
- 批准号:2054973
- 负责人:
- 金额:$ 29.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The research activities of this project will continue to deepen and broaden our understanding of two intimately connected mathematical fields: partial differential equations and differential geometry. The project will have an impact in the study of special Lagrangian equations, complex Monge-Ampère equations, and Hamiltonian stationary equations, which provide the mathematical foundation for mirror symmetry in the string theory of modern physics, and of maximal surface systems, which have the roots in general relativity. These Hessian equations are also related to nonlinear elasticity theory in mechanics, which studies the mechanisms whereby a material that is stretched returns to its original size and shape. The project provides research training opportunities for graduate students. The objectives for special Lagrangian equations are to derive Schauder and Calderón-Zygmund estimates for equations with critical and supercritical phases, to answer whether any homogeneous order two solution in dimension five or higher is trivial, to study low regularity of continuous viscosity solutions to the equations with subcritical phases, to investigate the existence and uniqueness of solutions to the Dirichlet problem for the special Lagrangian equation with continuous variable phase, and to resolve periodic Liouville problems with constraints as well as (entire) Liouville problem for the complex version of the special Lagrangian equation. The aim for symmetric sigma-k equations is to investigate Hessian estimates and regularity for sigma-2 equations in dimension four and higher, to obtain Schauder and Calderón-Zygmund estimates for 3-d sigma-2 equations, and to study the Liouville problem for sigma-k equations. The plan for complex and real Monge-Ampère equations is to demonstrate the triviality of any global solution to complex Monge-Ampère equations including self-shrinking equations for the Kähler-Ricci flow with certain necessary restrictions and to derive regularity of solutions to the real Monge-Ampère equations under a noncollapsing condition. For the case of maximal surface systems the goal is to study the Bernstein problems for exterior solutions and regularity for solutions under a noncollapsing condition. The project will also take on Hamiltonian stationary equations, where it aims to establish existence of the solutions to the second boundary value problem and rigidity for the Hamiltonian stationary equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的研究活动将继续加深和扩大我们对两个紧密联系的数学领域的理解:部分微分方程和差异几何形状。该项目将对特殊拉格朗日方程,复杂的蒙格 - 安培方程和汉密尔顿固定方程式的研究产生影响,这些方程为现代物理学的弦理论和最大表面系统的数学基础提供了数学基础,这些基础具有一般相对论的根。这些HESSIAN方程也与机械中的非线性弹性理论有关,该理论研究了一种机制,该机制将拉伸的材料返回其原始大小和形状。该项目为研究生提供了研究培训机会。 The objectives for special Lagrangian equations are to derive Schauder and Calderón-Zygmund estimates for equations with critical and supercritical phases, to answer whether any homogeneous order two solutions in dimension five or higher is trivial, to study low regularity of continuous viscosity solutions to the equations with subcritical phases, to investigate the existence and uniqueness of solutions to the Dirichlet problem for the special Lagrangian equation with连续可变阶段,并解决特殊Lagrangian方程的复杂版本的限制以及(整个)Liouville问题的定期问题。对称Sigma-k方程的目的是研究四个及更高尺寸的Sigma-2方程的Hessian估计和规律性,以获取Schauder和Calderón-Zygmund估计3-D Sigma-2方程,并研究Sigma-K方程的Liouville问题。复杂和真实的Monge-Ampère方程的计划是证明对复杂的Monge-Ampère方程的任何全球解决方案的微不足道,包括Kähler-Icci流动的自我缩减方程,并在非收获条件下对真实的Monge-Ampère方程进行某些必要的限制,并为实现某些必要的限制。对于最大表面系统的情况,目标是研究外部解决方案的伯恩斯坦问题,并在非策略条件下研究解决方案的规律性。该项目还将采用汉密尔顿固定方程式,旨在建立解决第二个边界价值问题的解决方案和汉密尔顿固定方程式的僵化。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来通过评估来诚实地支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Singular Solutions to Monge-Ampère Equation
Monge-Ampère 方程的奇异解
- DOI:10.4208/ata.oa-0023
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Caffarelli, Luis A.;Yuan, Yu
- 通讯作者:Yuan, Yu
A monotonicity approach to Pogorelov's Hessian estimates for Monge- Ampère equation
Monge-Ampère 方程 Pogorelov 的 Hessian 估计的单调性方法
- DOI:10.3934/mine.2023037
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Yuan, Yu
- 通讯作者:Yuan, Yu
Rigidity for general semiconvex entire solutions to the sigma-2 equation
- DOI:10.1215/00127094-2022-0034
- 发表时间:2021-07
- 期刊:
- 影响因子:2.5
- 作者:R. Shankar;Yu Yuan
- 通讯作者:R. Shankar;Yu Yuan
Regularity for convex viscosity solutions of special Lagrangian equation
- DOI:10.1002/cpa.22130
- 发表时间:2019-11
- 期刊:
- 影响因子:3
- 作者:Jingyi Chen;R. Shankar;Yu Yuan
- 通讯作者:Jingyi Chen;R. Shankar;Yu Yuan
共 4 条
- 1
Yu Yuan其他文献
Temperature-driven wear behavior of Si3N4-based ceramic reinforced by in situ formed TiC0.3N0.7 particles
原位形成的 TiC0.3N0.7 颗粒增强 Si3N4 基陶瓷的温度驱动磨损行为
- DOI:10.1111/jace.1628310.1111/jace.16283
- 发表时间:20192019
- 期刊:
- 影响因子:3.9
- 作者:Liu Jiongjie;Yang Jun;Zhu Shengyu;Cheng Jun;Yu Yuan;Qiao Zhuhui;Liu WeiminLiu Jiongjie;Yang Jun;Zhu Shengyu;Cheng Jun;Yu Yuan;Qiao Zhuhui;Liu Weimin
- 通讯作者:Liu WeiminLiu Weimin
The Influence of Track Structure Parameters on the Dynamic Response Sensitivity of Heavy Haul Train-LVT System
轨道结构参数对重载列车-LVT系统动态响应灵敏度的影响
- DOI:10.3390/app11241183010.3390/app112411830
- 发表时间:2021-122021-12
- 期刊:
- 影响因子:0
- 作者:Zhi-Ping Zeng;Yan-Cai Xiao;Wei-Dong Wang;Xu-Dong Huang;Xiang-Gang Du;Lan-Li Liu;Joseph Eleojo Victor;Zhong-Lin Xie;Yu Yuan;Jun-Dong WangZhi-Ping Zeng;Yan-Cai Xiao;Wei-Dong Wang;Xu-Dong Huang;Xiang-Gang Du;Lan-Li Liu;Joseph Eleojo Victor;Zhong-Lin Xie;Yu Yuan;Jun-Dong Wang
- 通讯作者:Jun-Dong WangJun-Dong Wang
Associations of the PTEN -9C>G polymorphism with insulin sensitivity and central obesity in Chinese.
PTEN -9C>G 多态性与中国人胰岛素敏感性和中心性肥胖的关系。
- DOI:10.1016/j.gene.2013.06.02610.1016/j.gene.2013.06.026
- 发表时间:20132013
- 期刊:
- 影响因子:3.5
- 作者:Qiu Yang;Hongyi Cao;Shugui Xie;Yuzhen Tong;Qibo Zhu;Fang Zhang;Q. Lü;Yan Yang;Daigang Li;Mei Chen;Chang;W. Jin;Yu Yuan;N. TongQiu Yang;Hongyi Cao;Shugui Xie;Yuzhen Tong;Qibo Zhu;Fang Zhang;Q. Lü;Yan Yang;Daigang Li;Mei Chen;Chang;W. Jin;Yu Yuan;N. Tong
- 通讯作者:N. TongN. Tong
Boron-Mediated Grain Boundary Engineering Enables Simultaneous Improvement of Thermoelectric and Mechanical Properties in N-Type Bi2Te3
硼介导的晶界工程可同时改善 N 型 Bi2Te3 的热电和机械性能
- DOI:10.1002/smll.20210406710.1002/smll.202104067
- 发表时间:20212021
- 期刊:
- 影响因子:13.3
- 作者:Zhang Chaohua;Geng Xingjin;Chen Bin;Li Junqin;Meledin Alex;er;Hu Lipeng;Liu Fusheng;Shi Jigui;Mayer Joachim;Wuttig Matthias;Cojocaru-Miredin Oana;Yu YuanZhang Chaohua;Geng Xingjin;Chen Bin;Li Junqin;Meledin Alex;er;Hu Lipeng;Liu Fusheng;Shi Jigui;Mayer Joachim;Wuttig Matthias;Cojocaru-Miredin Oana;Yu Yuan
- 通讯作者:Yu YuanYu Yuan
Self-Lubricating Si3N4-based composites toughened by in situ formation of silver
原位形成银增韧的自润滑 Si3N4 基复合材料
- DOI:10.1016/j.ceramint.2018.05.04010.1016/j.ceramint.2018.05.040
- 发表时间:2018-082018-08
- 期刊:
- 影响因子:5.2
- 作者:Liu Jiongjie;Yang Jun;Yu Yuan;Sun Qichun;Qiao Zhuhui;Liu WeiminLiu Jiongjie;Yang Jun;Yu Yuan;Sun Qichun;Qiao Zhuhui;Liu Weimin
- 通讯作者:Liu WeiminLiu Weimin
共 171 条
- 1
- 2
- 3
- 4
- 5
- 6
- 35
Yu Yuan的其他基金
Fully Nonlinear Elliptic and Parabolic Equations
完全非线性椭圆和抛物线方程
- 批准号:18004951800495
- 财政年份:2018
- 资助金额:$ 29.07万$ 29.07万
- 项目类别:Continuing GrantContinuing Grant
Conference on Geometric Analysis
几何分析会议
- 批准号:17077601707760
- 财政年份:2017
- 资助金额:$ 29.07万$ 29.07万
- 项目类别:Standard GrantStandard Grant
Nonlinear elliptic equations
非线性椭圆方程
- 批准号:13621681362168
- 财政年份:2014
- 资助金额:$ 29.07万$ 29.07万
- 项目类别:Continuing GrantContinuing Grant
Fully nonlinear elliptic and parabolic equations
完全非线性椭圆和抛物线方程
- 批准号:11009661100966
- 财政年份:2011
- 资助金额:$ 29.07万$ 29.07万
- 项目类别:Continuing GrantContinuing Grant
Fully nonlinear elliptic equations
全非线性椭圆方程
- 批准号:07582560758256
- 财政年份:2008
- 资助金额:$ 29.07万$ 29.07万
- 项目类别:Standard GrantStandard Grant
Fully Nonlinear Equations
完全非线性方程
- 批准号:05008080500808
- 财政年份:2005
- 资助金额:$ 29.07万$ 29.07万
- 项目类别:Standard GrantStandard Grant
Regularity for Fully Nonlinear Equations
完全非线性方程的正则性
- 批准号:02007840200784
- 财政年份:2002
- 资助金额:$ 29.07万$ 29.07万
- 项目类别:Standard GrantStandard Grant
A Priori Estimates for Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的先验估计
- 批准号:02961530296153
- 财政年份:2001
- 资助金额:$ 29.07万$ 29.07万
- 项目类别:Continuing GrantContinuing Grant
A Priori Estimates for Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的先验估计
- 批准号:99703679970367
- 财政年份:1999
- 资助金额:$ 29.07万$ 29.07万
- 项目类别:Continuing GrantContinuing Grant
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深层碳酸盐岩酸蚀裂缝中反应-非线性两相流界面演化机制研究
- 批准号:52304047
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑多相多介质耦合作用的地下水位变化场地非线性地震响应机理研究
- 批准号:52378474
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于气体多通腔多模非线性效应的大能量可调谐光源的研究
- 批准号:12374318
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
少层硒化镓晶体辅助微结构光纤的超宽带二阶非线性效应及应用
- 批准号:62375223
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Fully Nonlinear Elliptic and Parabolic Equations
完全非线性椭圆和抛物线方程
- 批准号:18004951800495
- 财政年份:2018
- 资助金额:$ 29.07万$ 29.07万
- 项目类别:Continuing GrantContinuing Grant
Variational theory for fully nonlinear elliptic equations
全非线性椭圆方程的变分理论
- 批准号:DP170100929DP170100929
- 财政年份:2017
- 资助金额:$ 29.07万$ 29.07万
- 项目类别:Discovery ProjectsDiscovery Projects
Fully nonlinear elliptic equations in geometry
几何中的完全非线性椭圆方程
- 批准号:16200861620086
- 财政年份:2016
- 资助金额:$ 29.07万$ 29.07万
- 项目类别:Continuing GrantContinuing Grant
Geometric Analysis in Conformal Geometry and Fully Nonlinear Elliptic Partial Differential Equations
共形几何和全非线性椭圆偏微分方程中的几何分析
- 批准号:16120151612015
- 财政年份:2016
- 资助金额:$ 29.07万$ 29.07万
- 项目类别:Standard GrantStandard Grant
Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations
全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法
- 批准号:16201681620168
- 财政年份:2016
- 资助金额:$ 29.07万$ 29.07万
- 项目类别:Continuing GrantContinuing Grant