Nonlinear elliptic equations
非线性椭圆方程
基本信息
- 批准号:1362168
- 负责人:
- 金额:$ 27.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research activity into this proposed project will deepen our understanding of two intimately connected mathematical fields, partial differential equations and differential geometry, which may be viewed as extensions of advanced calculus. Simultaneously, the project will also have impact on the areas on which the equations studied in the project rest: some equations provide the mathematical foundation for mirror symmetry in the string theory of modern physics, which is a unified way to describe our physical universe; another equation is an effective model in material science; solutions to the so called Isaacs equations lead to the optimal strategy for certain random processes, for example, in engineering and finance; Also Hessian equations are related to nonlinear elasticity theory in mechanics, which studies the mechanisms whereby a material that is stretched returns to its original size and shape.The objectives for special Lagrangian equations are to derive Schauder and Calderon-Zygmund estimates for the equations with critical and supercritical phases, to answer the question whether any homogeneous order two solution in dimension five or higher is trivial or not, and to study low regularity of continuous viscosity solutions to the equations with subcritical phases. The purposes for self similar solutions to mean curvature flows are to classify Lagrangian translating solutions and study uniqueness of embedded sphere shrinker in 3-d Euclidean space. The aim for symmetric Hessian equations is to investigate Hessian estimates for quadratic Hessian equations in dimension four and higher and also scalar curvature equations, to obtain Schauder and Calderon-Zygmund estimates for 3-d quadratic Hessian equations, and to study the Liouville problem for k-symmetric Hessian equations. The attempt for fully nonlinear elliptic equations such as Isaacs equations in 3-d is to study the regularity for general fully nonlinear elliptic equations in 3-d, in particular for equations in the form of linear combinations of k-symmetric Hessians and finitely piecewise linear Isaacs equations. The plan for complex Monge-Ampere equations is to show the triviality of any global solution to complex Monge-Ampere equations including self-shrinking equations for the Kahler Ricci flow with certain necessary restrictions.
该提出的项目的研究活动将加深我们对两个密切相关的数学领域,部分微分方程和差异几何形状的理解,这可能被视为高级演算的扩展。同时,该项目还将影响项目休息中研究的方程式的领域:某些方程式为现代物理弦理论中的镜像对称性提供了数学基础,这是描述我们物理宇宙的统一方法;另一个方程是材料科学中的有效模型。所谓的ISAACS方程的解决方案为某些随机过程(例如工程和金融方面)带来了最佳策略; Also Hessian equations are related to nonlinear elasticity theory in mechanics, which studies the mechanisms whereby a material that is stretched returns to its original size and shape.The objectives for special Lagrangian equations are to derive Schauder and Calderon-Zygmund estimates for the equations with critical and supercritical phases, to answer the question whether any homogeneous order two solution in dimension five or higher is trivial or not, and to study low regularity具有亚临界相的方程式的连续粘度解。自我类似解决方案的曲率流的目的是对拉格朗日翻译解决方案进行分类,并研究3-D欧几里得空间中嵌入式球体收缩器的独特性。对称的Hessian方程的目的是研究四个及更高和标量曲率方程的二次HESSIAN方程的Hessian估计值,以获取Schauder和Calderon-Zygmund估计3-D Quadratic Hessian方程的估计,并研究K-Memmetric Hessian方程的Liouville问题。 3-D中的全非线性椭圆方程(例如ISAACS方程)的尝试是为了研究3-D中一般非线性椭圆方程的规律性,尤其是以k-对称Hessians的线性组合形式的方程式和有限分段的线性线性ISAACS方程。复杂的Monge-Ampere方程的计划是表明对复杂的Monge-Ampere方程的任何全球解决方案的微不足道,包括Kahler Ricci流的自我缩减方程,并具有某些必要的限制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Yuan其他文献
Temperature-driven wear behavior of Si3N4-based ceramic reinforced by in situ formed TiC0.3N0.7 particles
原位形成的 TiC0.3N0.7 颗粒增强 Si3N4 基陶瓷的温度驱动磨损行为
- DOI:
10.1111/jace.16283 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Liu Jiongjie;Yang Jun;Zhu Shengyu;Cheng Jun;Yu Yuan;Qiao Zhuhui;Liu Weimin - 通讯作者:
Liu Weimin
The Influence of Track Structure Parameters on the Dynamic Response Sensitivity of Heavy Haul Train-LVT System
轨道结构参数对重载列车-LVT系统动态响应灵敏度的影响
- DOI:
10.3390/app112411830 - 发表时间:
2021-12 - 期刊:
- 影响因子:0
- 作者:
Zhi-Ping Zeng;Yan-Cai Xiao;Wei-Dong Wang;Xu-Dong Huang;Xiang-Gang Du;Lan-Li Liu;Joseph Eleojo Victor;Zhong-Lin Xie;Yu Yuan;Jun-Dong Wang - 通讯作者:
Jun-Dong Wang
Associations of the PTEN -9C>G polymorphism with insulin sensitivity and central obesity in Chinese.
PTEN -9C>G 多态性与中国人胰岛素敏感性和中心性肥胖的关系。
- DOI:
10.1016/j.gene.2013.06.026 - 发表时间:
2013 - 期刊:
- 影响因子:3.5
- 作者:
Qiu Yang;Hongyi Cao;Shugui Xie;Yuzhen Tong;Qibo Zhu;Fang Zhang;Q. Lü;Yan Yang;Daigang Li;Mei Chen;Chang;W. Jin;Yu Yuan;N. Tong - 通讯作者:
N. Tong
Boron-Mediated Grain Boundary Engineering Enables Simultaneous Improvement of Thermoelectric and Mechanical Properties in N-Type Bi2Te3
硼介导的晶界工程可同时改善 N 型 Bi2Te3 的热电和机械性能
- DOI:
10.1002/smll.202104067 - 发表时间:
2021 - 期刊:
- 影响因子:13.3
- 作者:
Zhang Chaohua;Geng Xingjin;Chen Bin;Li Junqin;Meledin Alex;er;Hu Lipeng;Liu Fusheng;Shi Jigui;Mayer Joachim;Wuttig Matthias;Cojocaru-Miredin Oana;Yu Yuan - 通讯作者:
Yu Yuan
Self-Lubricating Si3N4-based composites toughened by in situ formation of silver
原位形成银增韧的自润滑 Si3N4 基复合材料
- DOI:
10.1016/j.ceramint.2018.05.040 - 发表时间:
2018-08 - 期刊:
- 影响因子:5.2
- 作者:
Liu Jiongjie;Yang Jun;Yu Yuan;Sun Qichun;Qiao Zhuhui;Liu Weimin - 通讯作者:
Liu Weimin
Yu Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Yuan', 18)}}的其他基金
Fully Nonlinear Elliptic and Parabolic Equations
完全非线性椭圆和抛物线方程
- 批准号:
1800495 - 财政年份:2018
- 资助金额:
$ 27.64万 - 项目类别:
Continuing Grant
Fully nonlinear elliptic and parabolic equations
完全非线性椭圆和抛物线方程
- 批准号:
1100966 - 财政年份:2011
- 资助金额:
$ 27.64万 - 项目类别:
Continuing Grant
Regularity for Fully Nonlinear Equations
完全非线性方程的正则性
- 批准号:
0200784 - 财政年份:2002
- 资助金额:
$ 27.64万 - 项目类别:
Standard Grant
A Priori Estimates for Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的先验估计
- 批准号:
0296153 - 财政年份:2001
- 资助金额:
$ 27.64万 - 项目类别:
Continuing Grant
A Priori Estimates for Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的先验估计
- 批准号:
9970367 - 财政年份:1999
- 资助金额:
$ 27.64万 - 项目类别:
Continuing Grant
相似国自然基金
低对称性椭圆形磁性纳米线的制备与磁性研究
- 批准号:12275114
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
塑料排水板地基精细固结理论及优化设计方法
- 批准号:51878185
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
椭圆形FRP-混凝土-钢双壁空心管柱力学性能及设计方法研究
- 批准号:51778102
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
一些椭圆形方程反问题的Tikhonov正则化方法的收敛速度
- 批准号:11701205
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
椭圆形FRP-混凝土-钢组合空心柱的截面优化和抗震性能研究
- 批准号:51608263
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Nonlinear Elliptic Equations and Systems, and Applications
非线性椭圆方程和系统以及应用
- 批准号:
2247410 - 财政年份:2023
- 资助金额:
$ 27.64万 - 项目类别:
Standard Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 27.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Singular and Global Solutions to Nonlinear Elliptic Equations
职业:非线性椭圆方程的奇异和全局解
- 批准号:
2143668 - 财政年份:2022
- 资助金额:
$ 27.64万 - 项目类别:
Continuing Grant
Singular solutions for nonlinear elliptic and parabolic equations
非线性椭圆方程和抛物方程的奇异解
- 批准号:
DP220101816 - 财政年份:2022
- 资助金额:
$ 27.64万 - 项目类别:
Discovery Projects
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
- 批准号:
RGPIN-2018-03773 - 财政年份:2022
- 资助金额:
$ 27.64万 - 项目类别:
Discovery Grants Program - Individual