Geometry of measures and applications

测量几何和应用

基本信息

  • 批准号:
    1664867
  • 负责人:
  • 金额:
    $ 19.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-15 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

When dipping a wire frame in a solution of soap suds one produces a thin soap film. Mathematically this is a very interesting object. It is closely related to the solution of the Plateau problem, which requires one to find a surface of minimal area that spans a given contour in space. (This classical problem is an example of those that one encounters in the calculus of variations.) The area of a surface can be understood as a measurement of energy. The basic guiding principle is that minimizing its energy will lead to a stable configuration in any physical system. In this project the principal investigator addresses questions concerning the minimization of energies, questions that take into account noise and small fluctuations of the phenomena being modelled. The hope is that this theory will be better suited than existing ones to address minimization questions that arise in nature.The principal investigator's goal in the project is to show that "almost minimizers," which are minimizers to noisy variational problems, inherit some of the properties of minimizers of the same functional minus the noise. This research requires the use of tools from the calculus of variations, harmonic analysis, partial differential equations, potential theory, and geometric measure theory. The project will build bridges between the aforementioned areas, hopefully transforming them in the process through the influx of new ideas. The expectation is that these new ideas will, in particular, find applications in other variational problems with free boundaries.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tatiana Toro其他文献

A case of envenomation by the false fer-de-lance snake Leptodeira annulata (Linnaeus, 1758) in the department of La Guajira, Colombia
哥伦比亚拉瓜希拉省发生的一例假长矛蛇 Leptodeira annulata(林奈,1758 年)中毒事件
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part II: The large constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao
  • 通讯作者:
    Zihui Zhao
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part I: The small constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao
  • 通讯作者:
    Zihui Zhao
Stability of Lewis and Vogel’s result
Lewis 和 Vogel 结果的稳定性
The two-phase problem for harmonic measure in VMO and the chord-arc condition
VMO谐波测量的两相问题及弦弧条件
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. Tolsa;Tatiana Toro
  • 通讯作者:
    Tatiana Toro

Tatiana Toro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tatiana Toro', 18)}}的其他基金

Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
  • 批准号:
    1928930
  • 财政年份:
    2020
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Continuing Grant
Geometry of Measures and Applications
测量几何与应用
  • 批准号:
    1954545
  • 财政年份:
    2020
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
  • 批准号:
    1853993
  • 财政年份:
    2019
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Standard Grant
REU Site: The Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP)
REU 网站:数学科学研究所本科项目 (MSRI-UP)
  • 批准号:
    1659138
  • 财政年份:
    2017
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
  • 批准号:
    1440140
  • 财政年份:
    2015
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Continuing Grant
Geometry of Measures
测量几何
  • 批准号:
    1361823
  • 财政年份:
    2014
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Continuing Grant
Geometry of Measures
测量几何
  • 批准号:
    0856687
  • 财政年份:
    2009
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Standard Grant
Free Boundary Regularity Problems in Harmonic Analysis
调和分析中的自由边界正则性问题
  • 批准号:
    0600915
  • 财政年份:
    2006
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Standard Grant
Geometric Measure Theory and Free Boundary Regularity Problems
几何测度论与自由边界正则问题
  • 批准号:
    0244834
  • 财政年份:
    2003
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Standard Grant
Geometry of Measures
测量几何
  • 批准号:
    9988737
  • 财政年份:
    2000
  • 资助金额:
    $ 19.2万
  • 项目类别:
    Standard Grant

相似国自然基金

乳酸堆积在血小板保存损伤中的分子作用机制及其干预措施研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
NUPR1调控肿瘤相关巨噬细胞促进甲状腺癌演进的机制及其干预措施研究
  • 批准号:
    82372875
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
如何应对日趋严重的职场物化?基于员工、组织和数智技术的干预措施研究
  • 批准号:
    72372012
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
抗结核药物对肠道菌群和代谢产物的影响机制及干预措施研究
  • 批准号:
    82304605
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社区获得性MRSA家庭传播动态及干预措施的Ross-Macdonald动力学模型仿真研究
  • 批准号:
    82360657
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Mechanisms of Rotator Cuff Injury During Manual Wheelchair Propulsion
手动轮椅推进过程中肩袖损伤的机制
  • 批准号:
    10572578
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
  • 批准号:
    10589666
  • 财政年份:
    2023
  • 资助金额:
    $ 19.2万
  • 项目类别:
Development of low-cost optically pumped magnetometer system for fetal applications
开发用于胎儿应用的低成本光泵磁力计系统
  • 批准号:
    10589808
  • 财政年份:
    2022
  • 资助金额:
    $ 19.2万
  • 项目类别:
Near real-time system for high-resolution computationalTMS navigation
用于高分辨率计算 TMS 导航的近实时系统
  • 批准号:
    10345482
  • 财政年份:
    2022
  • 资助金额:
    $ 19.2万
  • 项目类别:
Near real-time system for high-resolution computationalTMS navigation
用于高分辨率计算 TMS 导航的近实时系统
  • 批准号:
    10558627
  • 财政年份:
    2022
  • 资助金额:
    $ 19.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了