Geometry of Measures and Applications
测量几何与应用
基本信息
- 批准号:1954545
- 负责人:
- 金额:$ 22.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When dipping a frame in a solution of soap suds one produces a thin soap film. Mathematically this object is a constant mean curvature surface. It is closely related to the solution of the Plateau problem, which requires finding a surface of minimal area that spans a given shape in space. This problem is a classical question in the Calculus of Variations. The area is an energy functional, and the expectation is that minimizing it will lead to a stable configuration. In this project the PI addresses questions concerning the minimization of certain energy functionals that take into account noise and small random fluctuations of the phenomena being modeled. The expectation is that this theory will be better suited to reflect actual minimization questions arising in nature. A fundamental feature of the area functional is that it is invariant under rotations of space (if that space is homogeneous). The PI will address geometric and analytic questions in inhomogeneous and crystal-like spaces providing a model that reflects nature more accurately. This project will contribute to US workforce development through training and mentoring of graduate students and post-docs. One of the PI’s goals is to show that “almost minimizers”, which are minimizers to noisy variational problems inherit some of the properties of minimizers of the same functional without noise. This study requires using tools from calculus of variations, harmonic analysis and geometric measure theory. The expectation is that the new ideas developed along the way will find applications in other variational problems with free boundaries. The aim of the project concerning further developing analysis on non-smooth domains is to characterize the geometry of domains in Euclidean space in terms of the properties of solutions to canonical (anisotropic) operators. The project concerning the rectifiability of measures promises to reveal the fine structure of measures defined on crystal-like spaces. The overarching theme of this project brings together tools from Geometric Measure Theory, PDE, Potential Theory, Harmonic Analysis and Calculus of Variations, building bridges between these areas while transforming them by the influx of new ideas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将框架浸入肥皂泡的溶液中时,会产生薄肥皂膜。从数学上讲,该对象是恒定的平均曲率表面。它与高原问题的解决方案密切相关,该解决方案需要找到跨越空间形状的最小区域的表面。这个问题是变化计算中的一个经典问题。该区域是一个能量功能,期望是最小化它将导致稳定的配置。在该项目中,PI解决了有关某些能量功能的最小化问题,这些功能考虑了所建模现象的噪声和少量随机波动。期望这一理论将更适合反映自然界中出现的实际最小化问题。该区域功能的一个基本特征是它在空间旋转(如果空间是均匀的话)下是不变的。 PI将在不均匀和晶体状的空间中解决几何和分析问题,提供更准确地反映自然的模型。该项目将通过培训和心理化研究生和培训来为美国的劳动力发展做出贡献。 PI的目标之一是表明“几乎最小化的人”是噪声变异问题的最小化,从而继承了同一功能的最小化物的某些属性,而无需噪声。这项研究需要使用变化,谐波分析和几何测量理论的计算中的工具。期望的是,沿途开发的新想法将在其他自由边界的其他变化问题中找到应用。该项目涉及对非平滑域的进一步开发分析的目的是,根据规范(各向异性)操作员的溶液特性来表征欧几里得空间中域的几何形状。关于措施的纠正性,该项目有望揭示在晶体样空间上定义的措施的精细结构。该项目的总体主题汇集了几何测量理论,PDE,潜在理论,和声分析和变化的微积分,在这些领域之间建立桥梁的工具,同时通过新思想的影响来改变它们。该奖项反映了NSF的法定任务,并以评估的评估来表现出珍贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tatiana Toro其他文献
A case of envenomation by the false fer-de-lance snake Leptodeira annulata (Linnaeus, 1758) in the department of La Guajira, Colombia
哥伦比亚拉瓜希拉省发生的一例假长矛蛇 Leptodeira annulata(林奈,1758 年)中毒事件
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Teddy Angarita;Alejandro Montañez;Tatiana Toro;A. Rodríguez - 通讯作者:
A. Rodríguez
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part II: The large constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao - 通讯作者:
Zihui Zhao
Uniform rectifiability and elliptic operators satisfying a Carleson measure condition. Part I: The small constant case
满足卡尔森测度条件的均匀可整流性和椭圆算子。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Steve Hofmann;J. M. Martell;S. Mayboroda;Tatiana Toro;Zihui Zhao - 通讯作者:
Zihui Zhao
Stability of Lewis and Vogel’s result
Lewis 和 Vogel 结果的稳定性
- DOI:
10.4171/rmi/485 - 发表时间:
2004 - 期刊:
- 影响因子:1.2
- 作者:
David Preiss;Tatiana Toro - 通讯作者:
Tatiana Toro
The two-phase problem for harmonic measure in VMO and the chord-arc condition
VMO谐波测量的两相问题及弦弧条件
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
X. Tolsa;Tatiana Toro - 通讯作者:
Tatiana Toro
Tatiana Toro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tatiana Toro', 18)}}的其他基金
Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
- 批准号:
1928930 - 财政年份:2020
- 资助金额:
$ 22.81万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
- 批准号:
1853993 - 财政年份:2019
- 资助金额:
$ 22.81万 - 项目类别:
Standard Grant
REU Site: The Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP)
REU 网站:数学科学研究所本科项目 (MSRI-UP)
- 批准号:
1659138 - 财政年份:2017
- 资助金额:
$ 22.81万 - 项目类别:
Continuing Grant
Geometry of measures and applications
测量几何和应用
- 批准号:
1664867 - 财政年份:2017
- 资助金额:
$ 22.81万 - 项目类别:
Continuing Grant
Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
- 批准号:
1440140 - 财政年份:2015
- 资助金额:
$ 22.81万 - 项目类别:
Continuing Grant
Free Boundary Regularity Problems in Harmonic Analysis
调和分析中的自由边界正则性问题
- 批准号:
0600915 - 财政年份:2006
- 资助金额:
$ 22.81万 - 项目类别:
Standard Grant
Geometric Measure Theory and Free Boundary Regularity Problems
几何测度论与自由边界正则问题
- 批准号:
0244834 - 财政年份:2003
- 资助金额:
$ 22.81万 - 项目类别:
Standard Grant
相似国自然基金
如何应对日趋严重的职场物化?基于员工、组织和数智技术的干预措施研究
- 批准号:72372012
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
乳酸堆积在血小板保存损伤中的分子作用机制及其干预措施研究
- 批准号:
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:
抗结核药物对肠道菌群和代谢产物的影响机制及干预措施研究
- 批准号:82304605
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUPR1调控肿瘤相关巨噬细胞促进甲状腺癌演进的机制及其干预措施研究
- 批准号:82372875
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
社区获得性MRSA家庭传播动态及干预措施的Ross-Macdonald动力学模型仿真研究
- 批准号:82360657
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanisms of Rotator Cuff Injury During Manual Wheelchair Propulsion
手动轮椅推进过程中肩袖损伤的机制
- 批准号:
10572578 - 财政年份:2023
- 资助金额:
$ 22.81万 - 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
- 批准号:
10589666 - 财政年份:2023
- 资助金额:
$ 22.81万 - 项目类别:
Development of low-cost optically pumped magnetometer system for fetal applications
开发用于胎儿应用的低成本光泵磁力计系统
- 批准号:
10589808 - 财政年份:2022
- 资助金额:
$ 22.81万 - 项目类别:
Near real-time system for high-resolution computationalTMS navigation
用于高分辨率计算 TMS 导航的近实时系统
- 批准号:
10345482 - 财政年份:2022
- 资助金额:
$ 22.81万 - 项目类别:
Near real-time system for high-resolution computationalTMS navigation
用于高分辨率计算 TMS 导航的近实时系统
- 批准号:
10558627 - 财政年份:2022
- 资助金额:
$ 22.81万 - 项目类别: