CAREER: Measurement and Analysis of Osmosis-Mediated, Closed-cell Poroelastic Dynamics

职业:渗透介导的闭孔多孔弹性动力学的测量和分析

基本信息

项目摘要

This Faculty Early Career Development (CAREER) award will describe the physico-chemo-hydromechanical behavior of closed-cell fluid-solid composites under the regime of osmosis-driven motion. The plant kingdom quietly and efficiently goes about its life without the aid of muscle tissue. Despite this lack, plants can produce large and even rapid movements using water as the driving force. These movements enable energy harvesting. This award supports research efforts that use this osmosis-driven motion as inspiration. In leveraging plant architectures, the synthetic plant-tissue-analogs resulting from these efforts will provide a non-toxic, energy efficient, and tailored response. Simultaneously, such materials would require no connection to an external power support when used in water. The anticipated response of these hydraulic structures may be tuned to provide response variation as a function of both time and position. Responses such as these are essential for many tissue therapies and will benefit society via applications in healthcare and biomechanics. Further, the fundamental efforts supported by this award will enrich understanding of the hydraulic response of plants, a necessary component of detailed climate models. Educational activities for STEM outreach to young female athletes at sport camps will also be developed and extracurricular seminars on communication/rhetoric for scientific presentations will be established in collaboration with an English professor at the University of Illinois.The research team will develop a constitutive model for this currently undescribed class of materials by building on existing theories of poroelasticity for solids capable of finite deformation. Models will be informed by experiments on synthetic plant-tissue-analogs architected for a homogeneous deformation response when immersed in an aqueous environment. As validation of the final model, dynamically and/or inhomogeneously-deforming, architected composites will be designed and fabricated with an aim toward metastable, hierarchical self-assembled structures. In successfully modeling these materials, this work will fill an existing gap in the understanding of 'water relations' in plant tissue. Specifically, by controlling material and surface properties via engineered water-solid composites, this work will resolve an ongoing debate regarding inter- and intra-cellular water flow pathways and their dependence on the osmotic and hydrostatic pressure within the cells.
这项教师早期职业发展(职业)奖将描述闭孔流体 - 固定复合材料在渗透驱动的运动方面的物理化合物 - 溶质机械行为。植物王国在没有肌肉组织的帮助下悄悄地有效地延续了其生命。尽管缺乏这种缺乏,植物仍可以使用水作为驱动力产生大型甚至快速的运动。这些运动可以收获能量。该奖项支持使用这种渗透驱动的运动作为灵感的研究工作。在利用植物体系结构时,由这些努力产生的合成植物 - 组织 - 动物分析将提供无毒,节能和量身定制的反应。同时,在水中使用时,这种材料将不需要与外部电源支撑的连接。这些液压结构的预期响应可以调整以提供响应变化,这是时间和位置的函数。诸如此类的反应对于许多组织疗法至关重要,将通过医疗保健和生物力学的应用使社会受益。此外,该奖项支持的基本努力将丰富对植物的液压反应的理解,这是详细气候模型的必要组成部分。 Educational activities for STEM outreach to young female athletes at sport camps will also be developed and extracurricular seminars on communication/rhetoric for scientific presentations will be established in collaboration with an English professor at the University of Illinois.The research team will develop a constitutive model for this currently undescribed class of materials by building on existing theories of poroelasticity for solids capable of finite deformation.模型将通过对浸入水性环境中的合成植物 - 组织 - 组织 - 阿纳尔格的均匀变形响应进行实验来告知模型。作为对最终模型的验证,将设计和制造构建的复合材料,以动态和/或不均匀的形式形成,旨在旨在旨在旨在地稳态,分层自组装结构。在成功建模这些材料时,这项工作将填补对植物组织中“水关系”的理解的现有空白。具体而言,通过通过工程水固化复合材料来控制材料和表面特性,这项工作将解决有关细胞间和细胞内水流途径的持续辩论,以及它们对细胞内渗透和静水压力的依赖。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PDMS polymerized high internal phase emulsions (polyHIPEs) with closed-cell, aqueous-filled microcavities
  • DOI:
    10.1039/c9sm01732a
  • 发表时间:
    2019-12-21
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Kataruka, Amrita;Hutchens, Shelby B.
  • 通讯作者:
    Hutchens, Shelby B.
Deformation-dependent polydimethylsiloxane permeability measured using osmotic microactuators
使用渗透微执行器测量变形相关的聚二甲基硅氧烷渗透率
  • DOI:
    10.1039/d2sm01666d
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Spitzer, Alexandra R.;Hutchens, Shelby B.
  • 通讯作者:
    Hutchens, Shelby B.
Swelling of a non-vascular-plant-inspired soft composite
  • DOI:
    10.1016/j.matt.2021.10.015
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Kataruka, Amrita;Hutchens, Shelby B.
  • 通讯作者:
    Hutchens, Shelby B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shelby Hutchens其他文献

Work Motivation and Job Satisfaction of Sport Management Faculty Members
体育管理教师的工作动机和工作满意度
  • DOI:
    10.1123/smej.2017-0011
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    S. Stokowski;Bo Li;B. D. Goss;Shelby Hutchens;Megan R. Turk
  • 通讯作者:
    Megan R. Turk

Shelby Hutchens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shelby Hutchens', 18)}}的其他基金

The Interrelationship Between Friction and Fracture in Needle Insertion
进针时摩擦与断裂的相互关系
  • 批准号:
    2219787
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Experimental Measurement of Tearing and Cutting in Highly Deformable Solids Relating to the Mechanical Origin of Crack Blunting-Mediated Toughness
高变形固体撕裂和切割的实验测量与裂纹钝化介导的韧性的机械起源相关
  • 批准号:
    1562766
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

PPG与ECG信息融合新方法及其在房颤进程评估中的应用研究
  • 批准号:
    62371138
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
臭氧二次生成速率直接测量系统优化及模拟误差分析
  • 批准号:
    42375088
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高速网络流实时测量与可信分析
  • 批准号:
    62332013
  • 批准年份:
    2023
  • 资助金额:
    229 万元
  • 项目类别:
    重点项目
有限数据下强异质性惯性测量装置剩余寿命预测方法研究
  • 批准号:
    62373368
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
AI赋能的6G空地多路协同信道测量分析与建模仿真研究
  • 批准号:
    62371273
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Arlene George F32
阿琳·乔治 F32
  • 批准号:
    10722238
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
Anxiety in Youth with Autism Spectrum Disorder
自闭症谱系障碍青少年的焦虑
  • 批准号:
    10784337
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Towards equitable early identification of autism spectrum disorders in females
实现女性自闭症谱系障碍的公平早期识别
  • 批准号:
    10722011
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Digital monitoring of autonomic activity to detect empathy loss in behavioral variant frontotemporal dementia
对自主活动进行数字监测以检测行为变异型额颞叶痴呆的同理心丧失
  • 批准号:
    10722938
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
  • 批准号:
    10725500
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了