CAREER: Modeling and Inference for Large Scale Spatio-Temporal Data
职业:大规模时空数据的建模和推理
基本信息
- 批准号:1651565
- 负责人:
- 金额:$ 54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Key sustainability challenges, such as poverty mitigation, climate change, and food security, involve global phenomena that are unique in scale and complexity. Our global sensing capabilities - from remote sensing to crowdsourcing - are becoming increasingly economical and accurate. These recent technological developments are creating new spatio-temporal data streams that contain a wealth of information relevant to sustainable development goals. Actionable insights, however, cannot be easily extracted because the sheer size and unstructured nature of the data preclude traditional analysis techniques. This five-year career-development plan is an integrated research, education, and outreach program focused on developing new AI techniques to extract actionable insights from large-scale spatio-temporal data. These techniques have the potential to yield accurate, inexpensive, and highly scalable models to inform research and policy.The research goal of this project is to develop new modeling and algorithmic frameworks to help address global sustainability challenges involving spatio-temporal data. This research will develop new predictive models of complex spatio-temporal phenomena integrating in unique ways ideas from graphical models and representation learning, improving their overall performance. New approaches to learn from unlabeled data exploiting various forms of prior domain knowledge, including spatio-temporal dependencies and relationships between different data modalities, will be developed. To learn models and make predictions at scale, this project will also develop new scalable probabilistic inference methods based on the use of random projections to reduce the dimensionality of probabilistic models while preserving their key properties. The techniques developed will be made available to both academia and industry through open-source software, and will enable computationally feasible approaches for analyzing large spatio-temporal datasets and for modeling global scale phenomena. Predictions and data products produced by this project will enable new analyses and advance sustainability disciplines. Results will be disseminated widely through scientific articles, research seminars, and conference presentations to maximize the benefits to the scientific community. Educational and outreach efforts will include the involvement of undergraduate students undertaking independent research projects, a website describing research bridging computation and, and a summer outreach program aimed at introducing under-represented high-school students to computer science and artificial intelligence.
关键的可持续性挑战,例如缓解贫困,气候变化和粮食安全,涉及规模和复杂性独特的全球现象。从遥感到众包,我们的全球传感能力正在变得越来越经济和准确。这些最新的技术发展正在创建新的时空数据流,其中包含大量与可持续发展目标相关的信息。但是,由于数据的巨大规模和非结构化性质妨碍了传统分析技术,因此无法轻易提取可行的见解。这个五年的职业发展计划是一项综合研究,教育和外展计划,旨在开发新的AI技术,以从大规模时空数据中提取可行的见解。这些技术有可能产生准确,廉价且高度可扩展的模型来为研究和政策提供信息。该项目的研究目标是开发新的建模和算法框架,以帮助应对涉及时空数据的全球可持续发展挑战。这项研究将开发出复杂时空现象的新预测模型,以独特的方式整合图形模型和表示学习,从而提高其整体绩效。将开发新的方法来从无标记的数据中学习利用各种形式的先前领域知识,包括时空依赖性以及不同数据模式之间的关系。为了学习模型并进行大规模预测,该项目还将根据使用随机投影来降低概率模型的维度,同时保留其关键属性,从而开发新的可扩展概率推理方法。开发的技术将通过开源软件提供给学术界和行业,并将启用计算可行的方法,用于分析大型时空数据集和对全球规模现象进行建模。该项目生产的预测和数据产品将实现新的分析并提高可持续性学科。结果将通过科学文章,研究研讨会和会议演讲来广泛传播,以最大程度地利用科学界的好处。教育和推广工作将包括从事独立研究项目的本科生的参与,一个描述研究桥接计算的网站以及旨在将代表性不足的高中生引入计算机科学和人工智能的夏季推广计划。
项目成果
期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ButterflyFlow: Building Invertible Layers with Butterfly Matrices
- DOI:10.48550/arxiv.2209.13774
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Chenlin Meng;Linqi Zhou;Kristy Choi;Tri Dao;Stefano Ermon
- 通讯作者:Chenlin Meng;Linqi Zhou;Kristy Choi;Tri Dao;Stefano Ermon
Using satellite imagery to understand and promote sustainable development
- DOI:10.1126/science.abe8628
- 发表时间:2021-03-19
- 期刊:
- 影响因子:56.9
- 作者:Burke, Marshall;Driscoll, Anne;Ermon, Stefano
- 通讯作者:Ermon, Stefano
Geography-Aware Self-Supervised Learning
- DOI:10.1109/iccv48922.2021.01002
- 发表时间:2021-01-01
- 期刊:
- 影响因子:0
- 作者:Ayush, Kumar;Uzkent, Burak;Ermon, Stefano
- 通讯作者:Ermon, Stefano
Generative Modeling by Estimating Gradients of the Data Distribution
- DOI:
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Yang Song;Stefano Ermon
- 通讯作者:Yang Song;Stefano Ermon
Negative Data Augmentation
- DOI:
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Abhishek Sinha;Kumar Ayush;Jiaming Song;Burak Uzkent;Hongxia Jin;Stefano Ermon
- 通讯作者:Abhishek Sinha;Kumar Ayush;Jiaming Song;Burak Uzkent;Hongxia Jin;Stefano Ermon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefano Ermon其他文献
Uncertainty Quantification for Forward and Inverse Problems of PDEs via Latent Global Evolution
通过潜在全局演化对偏微分方程的正向和逆向问题进行不确定性量化
- DOI:
10.48550/arxiv.2402.08383 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tailin Wu;W. Neiswanger;Hongtao Zheng;Stefano Ermon;J. Leskovec - 通讯作者:
J. Leskovec
Variable Elimination in the Fourier Domain
傅里叶域中的变量消除
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yexiang Xue;Stefano Ermon;Ronan Le Bras;C. Gomes;B. Selman - 通讯作者:
B. Selman
Playing games against nature: optimal policies for renewable resource allocation
与自然博弈:可再生资源配置的最优政策
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Stefano Ermon;J. Conrad;C. Gomes;B. Selman - 通讯作者:
B. Selman
SMT-Aided Combinatorial Materials Discovery
SMT 辅助组合材料发现
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Stefano Ermon;Ronan Le Bras;C. Gomes;B. Selman;R. B. Dover - 通讯作者:
R. B. Dover
Towards transferable building damage assessment via unsupervised single-temporal change adaptation
- DOI:
10.1016/j.rse.2024.114416 - 发表时间:
2024-12-15 - 期刊:
- 影响因子:
- 作者:
Zhuo Zheng;Yanfei Zhong;Liangpei Zhang;Marshall Burke;David B. Lobell;Stefano Ermon - 通讯作者:
Stefano Ermon
Stefano Ermon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefano Ermon', 18)}}的其他基金
AitF: Collaborative Research: Efficient High-Dimensional Integration using Error-Correcting Codes
AitF:协作研究:使用纠错码进行高效高维积分
- 批准号:
1733686 - 财政年份:2017
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
EAGER: IIS: Empowering Probabilistic Reasoning with Random Projections
EAGER:IIS:通过随机投影增强概率推理
- 批准号:
1649208 - 财政年份:2016
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
相似国自然基金
热液改造型页岩成储机理研究——以松辽盆地青一段为例
- 批准号:42372150
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
定制亲疏油图案与仿生微造型耦合的复合沟槽阵列表面润滑增效机理及应用
- 批准号:52205201
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
几何造型与机器学习融合的图像数据拟合问题研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
- 批准号:72271252
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
相似海外基金
Examining differential effects of state equality-promoting policies on harmful alcohol use among sexual and gender minority adults in the U.S.: an econometrics approach for causal inference
检查州促进平等政策对美国性少数和性别少数成年人有害饮酒的不同影响:因果推断的计量经济学方法
- 批准号:
10752039 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Cognitive and Neural Strategies for Latent Feature Inference
潜在特征推理的认知和神经策略
- 批准号:
10662877 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Flexible causal inference methods for estimating longitudinal effects of air pollution on chronic lung disease
用于估计空气污染对慢性肺病纵向影响的灵活因果推理方法
- 批准号:
10427790 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Estimating the Impact of Out-of-Home Placement on Health Risk Behavior in Adolescents Exposed to Maltreatment: An Advanced Causal Inference Approach
估计户外安置对遭受虐待的青少年健康风险行为的影响:一种高级因果推理方法
- 批准号:
10535085 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Estimating the Impact of Out-of-Home Placement on Health Risk Behavior in Adolescents Exposed to Maltreatment: An Advanced Causal Inference Approach
估计户外安置对遭受虐待的青少年健康风险行为的影响:一种高级因果推理方法
- 批准号:
10678772 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别: