AitF: Collaborative Research: Efficient High-Dimensional Integration using Error-Correcting Codes

AitF:协作研究:使用纠错码进行高效高维积分

基本信息

  • 批准号:
    1733686
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Efficiently estimating integrals of high-dimensional functions is a fundamental and largely unsolved computational problem, manifesting in scientific areas from biology and physics to economics. In particular, in Artificial Intelligence and Machine Learning, a wide array of methods are computationally limited precisely because they require the computation of high-dimensional integrals. While computing such integrals exactly is highly intractable, approximations suffice for many applications. Currently, approximation is attempted using two main classes of algorithms: Markov Chain Monte Carlo (MCMC) sampling methods and variational inference techniques. The former are asymptotically accurate, but their computational budget is inflexible and often prohibitive. The latter have manageable computational budget, but typically come with no accuracy guarantees. This project will investigate a new family of computationally efficient approximation methods which reduce the task of integration to the much better studied task of optimization, thus leveraging decades of research and engineering in combinatorial optimization methods and technology. A key goal of the project is to develop an open-source software library of efficient tools for high-dimensional integration.The reduction of integration to optimization builds on the probabilistic reduction of decision problems to uniqueness promise problems developed in the mid-80s. Specifically, the idea is to use systems of random parity equations in order to specify random subsets of the function's domain, and relate integration to the task of optimization over these subsets. In general, the capacity for efficient optimization fundamentally stems from the capacity to summarily dispense large parts of the domain as uninteresting. The key question to be addressed by the project is whether it is possible to define random subsets over which optimization is both tractable and informative for integration. To that end, the project will employ random systems of linear equations corresponding to Low Density Parity Check (LDPC) matrices for error-correcting codes. The energy landscape, i.e., the number of violated equations, of such systems is far smoother than that of the generic (dense) random systems of linear equations that underlie the original mid-80s technique, thus being far more amenable to optimization. The project will also build upon the deep understanding gained in the last two decades for LDPC codes in the field of communications, with the goal of integrating a priori knowledge about the energy landscape in the optimization strategy. This will provide a fundamentally new use for error-correcting codes, creating a bridge between the areas of optimization and information theory.
有效地估算高维功能的积分是一个基本的,并且在很大程度上无法解决的计算问题,在从生物学和物理学到经济学的科学领域表现出来。特别是,在人工智能和机器学习中,各种各样的方法在计算上是限制的,因为它们需要计算高维积分。虽然计算此类积分非常棘手,但对于许多应用来说,近似值就足够了。当前,使用两种主要类别的算法类别尝试近似:马尔可夫链蒙特卡洛(MCMC)采样方法和变异推理技术。前者渐近准确,但是他们的计算预算僵化且通常是过于刺激的。后者具有可管理的计算预算,但通常没有准确的保证。该项目将调查一个新的计算高效近似方法,该方法将整合的任务降低到更好地研究的优化任务,从而利用组合优化方法和技术利用数十年的研究和工程。该项目的一个关键目标是开发一个开源软件库,以高维集成为有效的工具。将集成到优化的集成减少基于将决策问题降低到80年代中期开发的独特性问题的概率。具体而言,这个想法是使用随机平价方程的系统来指定函数域的随机子集,并将集成与对这些子集的优化任务相关联。通常,进行有效优化的能力从根本上源于将域的大部分分配给无趣的能力。该项目要解决的关键问题是是否可以在哪些优化既可以易于又有且有用的集成方式定义随机子集。为此,该项目将采用与低密度奇偶校验检查(LDPC)矩阵相对应的线性方程式的随机系统,以进行错误校正代码。这种系统的能量格局,即违反方程的数量,远比原始80年代中期技术的线性方程的通用(密集)随机系统的范围更加顺畅,因此可以优化得多。该项目还将建立在过去二十年来对通信领域的LDPC代码中获得的深刻理解的基础,其目的是将有关能源景观的先验知识纳入优化策略。这将提供从根本上为错误校正代码提供新的用途,从而在优化和信息理论领域之间建立桥梁。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MintNet: Building Invertible Neural Networks with Masked Convolutions
  • DOI:
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Song;Chenlin Meng;Stefano Ermon
  • 通讯作者:
    Yang Song;Chenlin Meng;Stefano Ermon
Gaussianization Flows
高斯化流
Variational Rejection Sampling
  • DOI:
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aditya Grover;Ramki Gummadi;M. Lázaro-Gredilla;D. Schuurmans;Stefano Ermon
  • 通讯作者:
    Aditya Grover;Ramki Gummadi;M. Lázaro-Gredilla;D. Schuurmans;Stefano Ermon
Flexible Approximate Inference via Stratified Normalizing Flows
通过分层归一化流进行灵活的近似推理
A Lagrangian Perspective on Latent Variable Generative Models
  • DOI:
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengjia Zhao;Jiaming Song;Stefano Ermon
  • 通讯作者:
    Shengjia Zhao;Jiaming Song;Stefano Ermon
共 13 条
  • 1
  • 2
  • 3
前往

Stefano Ermon其他文献

Uncertainty Quantification for Forward and Inverse Problems of PDEs via Latent Global Evolution
通过潜在全局演化对偏微分方程的正向和逆向问题进行不确定性量化
  • DOI:
    10.48550/arxiv.2402.08383
    10.48550/arxiv.2402.08383
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tailin Wu;W. Neiswanger;Hongtao Zheng;Stefano Ermon;J. Leskovec
    Tailin Wu;W. Neiswanger;Hongtao Zheng;Stefano Ermon;J. Leskovec
  • 通讯作者:
    J. Leskovec
    J. Leskovec
Variable Elimination in the Fourier Domain
傅里叶域中的变量消除
Playing games against nature: optimal policies for renewable resource allocation
与自然博弈:可再生资源配置的最优政策
SMT-Aided Combinatorial Materials Discovery
SMT 辅助组合材料发现
Towards transferable building damage assessment via unsupervised single-temporal change adaptation
  • DOI:
    10.1016/j.rse.2024.114416
    10.1016/j.rse.2024.114416
  • 发表时间:
    2024-12-15
    2024-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Zhuo Zheng;Yanfei Zhong;Liangpei Zhang;Marshall Burke;David B. Lobell;Stefano Ermon
    Zhuo Zheng;Yanfei Zhong;Liangpei Zhang;Marshall Burke;David B. Lobell;Stefano Ermon
  • 通讯作者:
    Stefano Ermon
    Stefano Ermon
共 43 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 9
前往

Stefano Ermon的其他基金

CAREER: Modeling and Inference for Large Scale Spatio-Temporal Data
职业:大规模时空数据的建模和推理
  • 批准号:
    1651565
    1651565
  • 财政年份:
    2017
  • 资助金额:
    $ 36万
    $ 36万
  • 项目类别:
    Continuing Grant
    Continuing Grant
EAGER: IIS: Empowering Probabilistic Reasoning with Random Projections
EAGER:IIS:通过随机投影增强概率推理
  • 批准号:
    1649208
    1649208
  • 财政年份:
    2016
  • 资助金额:
    $ 36万
    $ 36万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    2051197
    2051197
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
    $ 36万
  • 项目类别:
    Standard Grant
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1940759
    1940759
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
    $ 36万
  • 项目类别:
    Standard Grant
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    2006206
    2006206
  • 财政年份:
    2019
  • 资助金额:
    $ 36万
    $ 36万
  • 项目类别:
    Standard Grant
    Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
  • 批准号:
    1733812
    1733812
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
    $ 36万
  • 项目类别:
    Standard Grant
    Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
  • 批准号:
    1854742
    1854742
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
    $ 36万
  • 项目类别:
    Standard Grant
    Standard Grant