喵ID:lu9xlG免责声明

Uncertainty Quantification for Forward and Inverse Problems of PDEs via Latent Global Evolution

通过潜在全局演化对偏微分方程的正向和逆向问题进行不确定性量化

基本信息

DOI:
10.48550/arxiv.2402.08383
发表时间:
2024
期刊:
ArXiv
影响因子:
--
通讯作者:
J. Leskovec
中科院分区:
文献类型:
--
作者: Tailin Wu;W. Neiswanger;Hongtao Zheng;Stefano Ermon;J. Leskovec研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Deep learning-based surrogate models have demonstrated remarkable advantages over classical solvers in terms of speed, often achieving speedups of 10 to 1000 times over traditional partial differential equation (PDE) solvers. However, a significant challenge hindering their widespread adoption in both scientific and industrial domains is the lack of understanding about their prediction uncertainties, particularly in scenarios that involve critical decision making. To address this limitation, we propose a method that integrates efficient and precise uncertainty quantification into a deep learning-based surrogate model. Our method, termed Latent Evolution of PDEs with Uncertainty Quantification (LE-PDE-UQ), endows deep learning-based surrogate models with robust and efficient uncertainty quantification capabilities for both forward and inverse problems. LE-PDE-UQ leverages latent vectors within a latent space to evolve both the system's state and its corresponding uncertainty estimation. The latent vectors are decoded to provide predictions for the system's state as well as estimates of its uncertainty. In extensive experiments, we demonstrate the accurate uncertainty quantification performance of our approach, surpassing that of strong baselines including deep ensembles, Bayesian neural network layers, and dropout. Our method excels at propagating uncertainty over extended auto-regressive rollouts, making it suitable for scenarios involving long-term predictions. Our code is available at: https://github.com/AI4Science-WestlakeU/le-pde-uq.
基于深度学习的代理模型在速度方面相较于经典求解器展现出显著优势,通常比传统的偏微分方程(PDE)求解器快10到1000倍。然而,阻碍它们在科学和工业领域广泛应用的一个重大挑战是对其预测不确定性缺乏了解,特别是在涉及关键决策的场景中。为解决这一局限,我们提出一种将高效且精确的不确定性量化集成到基于深度学习的代理模型中的方法。我们的方法被称为具有不确定性量化的偏微分方程潜在演化(LE - PDE - UQ),它为基于深度学习的代理模型赋予了针对正问题和逆问题的强大且高效的不确定性量化能力。LE - PDE - UQ利用潜在空间内的潜在向量来演化系统状态及其相应的不确定性估计。潜在向量被解码以提供系统状态的预测以及其不确定性的估计。在大量实验中,我们证明了我们的方法具有准确的不确定性量化性能,超过了包括深度集成、贝叶斯神经网络层和随机失活在内的强大基准方法。我们的方法在扩展的自回归展开中能出色地传播不确定性,使其适用于涉及长期预测的场景。我们的代码可在以下网址获取:https://github.com/AI4Science - WestlakeU/le - pde - uq
参考文献(6)
被引文献(0)
ConvPDE-UQ: Convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains
DOI:
10.1016/j.jcp.2019.05.026
发表时间:
2019-10
期刊:
J. Comput. Phys.
影响因子:
0
作者:
Nick Winovich;K. Ramani;Guang Lin
通讯作者:
Nick Winovich;K. Ramani;Guang Lin
Learning to Accelerate Partial Differential Equations via Latent Global Evolution
学习通过潜在全局进化加速偏微分方程
DOI:
发表时间:
2022
期刊:
Advances in neural information processing systems
影响因子:
0
作者:
Wu, Tailin;Maruyama, Takashi;Leskovec, Jure
通讯作者:
Leskovec, Jure
Individual Calibration with Randomized Forecasting
DOI:
发表时间:
2020-06
期刊:
ArXiv
影响因子:
0
作者:
Shengjia Zhao;Tengyu Ma;Stefano Ermon
通讯作者:
Shengjia Zhao;Tengyu Ma;Stefano Ermon
Deep(er) Learning.
深度(呃)学习。
DOI:
10.1523/jneurosci.0153-18.2018
发表时间:
2018
期刊:
The Journal of neuroscience : the official journal of the Society for Neuroscience
影响因子:
0
作者:
Srinivasan,Shyam;Greenspan,RalphJ;Stevens,CharlesF;Grover,Dhruv
通讯作者:
Grover,Dhruv
Learning Controllable Adaptive Simulation for Multi-resolution Physics
学习多分辨率物理的可控自适应仿真
DOI:
发表时间:
2023
期刊:
International Conference on Learning Representations (ICLR
影响因子:
0
作者:
Wu, Tailin;Maruyama, Takashi;Zhao, Qingqing;Wetzstein, Gordon;Leskovec, Jure
通讯作者:
Leskovec, Jure

数据更新时间:{{ references.updateTime }}

J. Leskovec
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓