Flexible causal inference methods for estimating longitudinal effects of air pollution on chronic lung disease
用于估计空气污染对慢性肺病纵向影响的灵活因果推理方法
基本信息
- 批准号:10427790
- 负责人:
- 金额:$ 11.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-16 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAirAir PollutantsAir PollutionApplications GrantsAreaAwardBehavioralBiometryBiostatistical MethodsBlack raceBody mass indexChronic Obstructive Pulmonary DiseaseChronic lung diseaseClimateComplementComplexComputer softwareDataData ScienceData SourcesDependenceDiseaseDisease OutcomeDisease ProgressionDoseEnvironmental EpidemiologyEnvironmental HealthEnvironmental ScienceEpidemiologistEpidemiologyEthnic OriginEtiologyEvaluationExposure toFundingGoalsGrantHealthHeterogeneityHispanicImageIndividualInstructionK-Series Research Career ProgramsKnowledgeLinkLiteratureLongitudinal StudiesLongitudinal cohortLongitudinal observational studyLung diseasesMachine LearningMeasurementMeasuresMentorsMetalsMethodologyMethodsModelingMulti-Ethnic Study of AtherosclerosisNitrogen OxidesNot Hispanic or LatinoOutcomeOzoneParticulate MatterPoliciesPolicy AnalysisPollutionProbabilityPulmonary EmphysemaRaceResearchResearch DesignResearch PersonnelRiskScienceShapesSiteStatistical MethodsStatistical ModelsStructural ModelsSupervisionTechniquesTimeTrainingUncertaintyUnited StatesVariantWeightX-Ray Computed Tomographycareercareer developmentcohortcomputer sciencedesignepidemiologic datafine particlesflexibilityintervention effectlung healthmachine learning predictionmortalitynovelopen sourcepollutantpulmonary functionrespiratoryresponsesemiparametricsexsocialstatisticstool
项目摘要
Abstract
This application for a Mentored Quantitative Research Career Development Award has been submitted with
the goal of supporting Dr. Malinsky’s career as a quantitative researcher at the intersection of biostatistics,
epidemiology, and data science for environmental health. The training and research plan build on Dr.
Malinsky’s quantitative interdisciplinary background in statistics and computer science, in particular his
expertise in causal inference and machine learning. The overarching research goal is to develop novel
statistical methods for causal inference that meet important analytical challenges in observational
environmental epidemiology and apply these methods to the study of air pollution and chronic lung diseases,
using data from the longstanding Multi-Ethnic Study of Atherosclerosis (MESA). The methods will be used to
estimate the effects of several ambient air pollutants (ozone, fine particulate matter, and oxides of nitrogen) on
progression of emphysema and decline in lung function over an extended time period. Rigorously investigating
these relationships is important both for advancing our understanding of the etiology and mechanisms
underlying lung disease and to inform regulatory policies concerning pollution concentration levels. The focus
will be on extending and adapting methods for causal inference from observational longitudinal data, which
have been previously developed to accommodate time-varying confounding and quantify uncertainty due to
unmeasured confounding, but never applied to complex longitudinal data on air pollution and chronic lung
disease. These will be used to estimate the long-term lung disease consequences of hypothetical changes to
air pollution exposure levels. Aim 1 of the research plan extends existing methods to address challenges
specific to air pollution epidemiology, namely by exploiting advances in machine learning to estimate robust
exposure propensities and flexible dose-response functions. Aim 2 of the research plan leverages these
methods to investigate hypotheses about the relationships between the aforementioned pollutants and
measures of lung disease in the MESA data and identify vulnerable subpopulations. Aim 3 will extend an
approach to counterfactual sensitivity analysis in the statistical literature that quantifies uncertainty due to
unmeasured confounding to the setting of MESA and apply this approach to the MESA data. The application
delineates plans for mentoring and career development via supervision and didactic instruction in the areas of
air pollution science, environmental epidemiology, climate, longitudinal study design, and other topics relevant
to the construction of credible analysis models for the MESA data. Dr. Malinsky will be supported by a
mentoring team with considerable expertise in air pollution science & measurement, lung disease, biostatistical
methods, and environmental determinants of health. The award will establish Dr. Malinsky as an independent
investigator in this interdisciplinary area and enable him to successfully compete for R01 funding.
抽象的
该申请已提交了指导定量研究职业发展奖
支持马林斯基博士在生物统计学交集的定量研究人员职业的目标,
环境健康的流行病学和数据科学。培训和研究计划以博士为基础
马林斯基在统计和计算机科学方面的定量跨学科背景,尤其是他的
因果推理和机器学习方面的专业知识。总体研究目标是开发小说
因果推断的统计方法,符合观察性的重要分析挑战
环境流行病学并将这些方法应用于空气污染和慢性肺部疾病的研究,
使用长期以来对动脉粥样硬化多民族研究(MESA)的数据。这些方法将用于
估计几种环境空气污染物(臭氧,特殊物质和氮的氧化物)对
在延长的时间段内,先得研究肺气肿的进展和肺功能下降。
这些关系对于促进我们对病因和机制的理解很重要
潜在的肺部疾病并为有关污染浓度水平的监管政策提供信息。重点
将从观察性纵向数据中扩展和适应因果推断的方法,
以前已经开发出来适应随着时变的混杂和量化不确定性
无法衡量的混杂,但从未应用于空气污染和慢性肺的复杂纵向数据
疾病。这些将用于估计假设变化的长期肺部疾病后果
空气污染的水平。研究计划的目标1扩展了现有方法以应对挑战
特定于空气污染流行病学,即通过利用机器学习的进步来估计强大
暴露建议和灵活的剂量反应功能。目的2的研究计划利用了这些
调查有关相关性与关系之间关系的假设的方法
MESA数据中肺部疾病的度量并确定脆弱的亚群。 AIM 3将延伸
统计文献中反事实敏感性分析的方法,该方法量化了由于
无法衡量的混杂在MESA的设置中,并将这种方法应用于MESA数据。应用程序
通过监督和教学教学在
空气污染科学,环境流行病学,气候,纵向研究设计以及其他相关主题
构建用于MESA数据的可靠分析模型。马林斯基博士将得到
指导团队具有空气污染科学与测量,肺部疾病,生物统计学的考虑专业知识
方法和健康的环境决定者。该奖项将建立马林斯基博士为独立
这个跨学科地区的调查员使他能够成功竞争R01资金。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Malinsky其他文献
Daniel Malinsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Malinsky', 18)}}的其他基金
Flexible causal inference methods for estimating longitudinal effects of air pollution on chronic lung disease
用于估计空气污染对慢性肺病纵向影响的灵活因果推理方法
- 批准号:
10680381 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别:
A Next Generation Data Infrastructure to Understand Disparities across the Life Course
下一代数据基础设施可了解整个生命周期的差异
- 批准号:
10588092 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别:
GCS-CEAS: a novel tool for exposure assessment during disaster response
GCS-CEAS:灾难响应期间暴露评估的新工具
- 批准号:
10699942 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别:
Determine the role of atmospheric particulate matter pollutants in contributing to Lewy Body Dementia
确定大气颗粒物污染物在路易体痴呆症中的作用
- 批准号:
10662930 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别:
Wildfires and arrhythmias: evaluating associations and intervention strategies
野火和心律失常:评估关联和干预策略
- 批准号:
10861971 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别: