Stochastic Analysis of Large Investors
大投资者的随机分析
基本信息
- 批准号:1651180
- 负责人:
- 金额:$ 4.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Robinson1312419 The investigator and his colleagues use asymptotic methods from stochastic analysis to provide a comprehensive study of large investors in derivatives markets. The specific goals are first to identify characteristics of both the investor and the market that endogenously lead to large holdings, and second to determine the effects of large positions on pricing, price impact, portfolio optimization, and risk management. Because large positions induce extreme sensitivity to rare unexpected events, the theory of Large Deviations is well suited for this analysis. In particular, using Large Deviations in conjunction with utility-based theory on optimal position sizes, the investigator studies when, if ever, a risk-averse agent acting in an incomplete market should take a large position in a non-traded risky asset. Regarding the issue of pricing and hedging, it is well known that in incomplete markets investor preferences affect the price at which one is willing to buy a claim. Typically, closed-form expressions for utility based prices are unavailable and some approximation is necessary. Existing approximations are only valid for small position sizes and thus large holdings approximations provide a natural counterpart. In addition to determining asymptotic prices, the investigator identifies the key components of the investor's utility that drive such prices. Lastly, examples show that large positions arise in conjunction with asymptotically complete markets: the investigator thus seeks to extend this notion beyond the current one, which focuses on weak convergence of asset price laws, to a more natural notion in terms of the asymptotic ability to hedge. Once extended, questions regarding continuity with respect to market completeness are considered. From a rigorous mathematical perspective, the investigator seeks to understand the rapid growth in over-the-counter derivatives markets during the previous two decades. Given the complexity of many of these products, it is not clear why a bank, or some other financial institution, would wish to take on a large position in a claim, especially given the lack of perfect hedging strategies or liquid markets. The investigator thus studies when, if ever, a financial institution should own a significant notional amount of a derivative contract. Additionally, given such a position, the investigator aims to determine the impacts in terms of pricing, hedging, and over-all risk that a financial institution faces.
Robinson1312419调查员及其同事使用随机分析的渐近方法提供对衍生品市场中大型投资者的全面研究。 具体目标是首先确定投资者和内在导致大量持股的市场的特征,其次是确定大型头寸对定价,价格影响,投资组合优化和风险管理的影响。 由于大型位置对罕见意外事件产生极端敏感性,因此大偏差的理论非常适合该分析。 特别是,将大偏差与基于公用事业的最佳位置大小的理论结合使用,研究人员研究了在不完整市场中作用的抗风险代理时,应在非交易风险资产中处于较大的位置。 关于定价和对冲问题,众所周知,在不完整的市场中,投资者的偏好会影响人们愿意购买索赔的价格。 通常,基于公用事业价格的封闭式表达式不可用,并且需要一些近似值。 现有的近似仅适用于小位置大小,因此大容量近似值提供了自然的对应物。 除了确定渐近价格外,研究人员还确定了投资者效用的关键组成部分,这些效用可以推动此类价格。 最后,实例表明,大型立场与渐近完整的市场结合出现:因此,研究人员试图将此概念范围扩展到当前的概念之外,该概念的重点是资产价格法律的弱收敛性,以对冲的渐近能力来更自然的概念。 一旦扩展,就考虑了有关市场完整性的有关连续性的问题。 从严格的数学角度来看,研究人员试图了解过去二十年来非处方衍生品市场的快速增长。 考虑到许多这些产品的复杂性,尚不清楚银行或其他一些金融机构为什么希望在索赔中处于巨大地位,尤其是考虑到缺乏完美的对冲策略或液体市场。 因此,研究人员研究金融机构应拥有大量名义数量的衍生合同。 此外,鉴于这样的职位,研究人员旨在确定金融机构面临的定价,对冲和过度风险的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Robertson其他文献
Optimal Investment, Derivative Demand and Arbitrage Under Price Impact
价格影响下的最优投资、衍生品需求与套利
- DOI:
10.2139/ssrn.3297530 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Michail Anthropelos;Scott Robertson;K. Spiliopoulos - 通讯作者:
K. Spiliopoulos
Ergodic robust maximization of asymptotic growth
渐近增长的遍历稳健最大化
- DOI:
10.1214/20-aap1634 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
C. Kardaras;Scott Robertson - 通讯作者:
Scott Robertson
INDIFFERENCE PRICING FOR CONTINGENT CLAIMS: LARGE DEVIATIONS EFFECTS
或有债权的无差异定价:大偏差效应
- DOI:
10.1111/mafi.12137 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Scott Robertson;K. Spiliopoulos - 通讯作者:
K. Spiliopoulos
Learning to treat the climate emergency together: social tipping interventions by the health community.
学习共同应对气候紧急情况:卫生界的社会小费干预措施。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:25.7
- 作者:
C. Howard;Andrea J MacNeill;F. Hughes;Lujain Alqodmani;Kate E Charlesworth;Roberto de Almeida;R. Harris;Bruno Jochum;E. Maibach;Lwando Maki;F. McGain;Jeni Miller;Monica Nirmala;D. Pencheon;Scott Robertson;J. Sherman;Joe Vipond;H. Yin;Hugh Montgomery - 通讯作者:
Hugh Montgomery
Sample Path Large Deviations and Optimal Importance Sampling for Stochastic Volatility Models
- DOI:
10.1016/j.spa.2009.10.010 - 发表时间:
2010 - 期刊:
- 影响因子:1.4
- 作者:
Scott Robertson - 通讯作者:
Scott Robertson
Scott Robertson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Robertson', 18)}}的其他基金
Large Investor Analysis and Equilibrium Problems for Mortgage Backed Securities
抵押贷款支持证券的大投资者分析和均衡问题
- 批准号:
1613159 - 财政年份:2016
- 资助金额:
$ 4.27万 - 项目类别:
Continuing Grant
WORKSHOP: Doctoral Consortium at the 2014 ACM International Conference on Collaboration Across Boundaries (CABS 2014)
研讨会:博士联盟出席 2014 年 ACM 国际跨界合作会议 (CABS 2014)
- 批准号:
1446810 - 财政年份:2014
- 资助金额:
$ 4.27万 - 项目类别:
Standard Grant
Stochastic Analysis of Large Investors
大投资者的随机分析
- 批准号:
1312419 - 财政年份:2013
- 资助金额:
$ 4.27万 - 项目类别:
Continuing Grant
HCC: Medium: Social Search and Deliberation in Digital Political Information and Collaboration Domains
HCC:媒介:数字政治信息和协作领域的社会搜索和审议
- 批准号:
1064852 - 财政年份:2011
- 资助金额:
$ 4.27万 - 项目类别:
Continuing Grant
FY10 Cyberscope FISMA Reporting
2010 财年 Cyberscope FISMA 报告
- 批准号:
1059786 - 财政年份:2010
- 资助金额:
$ 4.27万 - 项目类别:
Contract Interagency Agreement
Digital Deliberation: Searching and Deciding About How to Vote
数字审议:搜索并决定如何投票
- 批准号:
0827911 - 财政年份:2007
- 资助金额:
$ 4.27万 - 项目类别:
Standard Grant
Digital Deliberation: Searching and Deciding About How to Vote
数字审议:搜索并决定如何投票
- 批准号:
0535036 - 财政年份:2006
- 资助金额:
$ 4.27万 - 项目类别:
Standard Grant
Errors, Explanation, and Plan Modification in Cognitive Skill Learning (Information Science)
认知技能学习中的错误、解释和计划修改(信息科学)
- 批准号:
8696141 - 财政年份:1986
- 资助金额:
$ 4.27万 - 项目类别:
Standard Grant
相似国自然基金
大维非中心化Fisher矩阵的谱分析及其应用
- 批准号:11901492
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
AIC, BIC及Cp准则在大维架构下的强相合性研究
- 批准号:11771073
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
大维动态因子分析模型的定阶问题
- 批准号:11571067
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
离群特征根的估计及其在大维主分量分析中的应用
- 批准号:11171057
- 批准年份:2011
- 资助金额:45.0 万元
- 项目类别:面上项目
大维样本协方差矩阵特征向量矩阵极限性状的研究
- 批准号:10871036
- 批准年份:2008
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Stochastic Analysis of Sea-Surface Wind Probability Distribution Modulations by Tropical Modes of Large-Scale Climate Variability
大尺度气候变率热带模态对海面风概率分布调制的随机分析
- 批准号:
575569-2022 - 财政年份:2022
- 资助金额:
$ 4.27万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
III: Small: Stochastic Algorithms for Large Scale Data Analysis
III:小型:大规模数据分析的随机算法
- 批准号:
2131335 - 财政年份:2021
- 资助金额:
$ 4.27万 - 项目类别:
Continuing Grant
III: Small: Stochastic Algorithms for Large Scale Data Analysis
III:小型:大规模数据分析的随机算法
- 批准号:
1908104 - 财政年份:2019
- 资助金额:
$ 4.27万 - 项目类别:
Continuing Grant
Stochastic Analysis and Numerics for Large Scale Dynamical Systems, with Applications
大规模动力系统的随机分析和数值及其应用
- 批准号:
1908665 - 财政年份:2019
- 资助金额:
$ 4.27万 - 项目类别:
Standard Grant
A study on the no-arbitrage condition and completeness of market models based on infinite dimensional stochastic analysis
基于无限维随机分析的市场模型无套利条件和完备性研究
- 批准号:
18J20973 - 财政年份:2018
- 资助金额:
$ 4.27万 - 项目类别:
Grant-in-Aid for JSPS Fellows