Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations

全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法

基本信息

  • 批准号:
    1620168
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

Fully nonlinear second order elliptic partial differential equations (PDEs) arise from many scientific and engineering applications such as differential geometry, antenna design, astrophysics, geophysical fluid dynamics, image processing, mathematical finance, optimal mass transport, and stochastic optimal control. These PDEs are among most difficult PDEs to study analytically and to solve numerically. Two major and distinct classes of fully nonlinear second order PDEs often arise from applications, namely, the Monge-Ampere (MA) type PDEs and the Hamilton-Jacobi-Bellman (HJB) type PDEs. They have very different structures and arise from distinct application fields. However, a recent discovery by the PI's research team finds that these two classes of PDEs are intimately related. This finding opens a door for utilizing and adapting the relatively wealthy numerical methods and techniques for HJB-type PDEs to solve MA-type PDEs and enables a possibility for bridging the gap on numerical methods between those two major classes of fully nonlinear PDEs. It also provides a deeper understanding about the strength and weakness of the existing numerical methods for both classes of fully nonlinear PDEs. The education component of this research project is to engage and train two graduate students in developing necessary applied and computational mathematics knowledge and skills so that they can pursue a successful career in either academia or industry in the near future.In this project, the PI will develop efficient numerical methods for both MA-type and HJB-type fully nonlinear PDEs. The PI will achieve the following goals in this project: (1) to establish equivalent (in the viscosity sense) HJB-reformulations for general MA-type equations, in particular, for the MA-type PDEs from optimal mass transport and for parabolic MA-type PDEs; (2) to systematically develop a high order semi-Lagrangian methodology and framework, which take the advantages of wide-stencil finite difference methods and unstructured triangular finite element and discontinuous Galerkin (DG) methods, for HJB-type and MA-type PDEs. (3) to develop convergent narrow-stencil finite difference, finite element and DG methods and framework for HJB-type and MA-type fully nonlinear PDEs based on some new and generalized numerical monotonicity concept; (4) to incorporate uncertainty into fully nonlinear PDE models by considering and developing efficient numerical methods for stochastic MA-type and HJB-type PDEs; (5) to apply the anticipated numerical methods to fully nonlinear PDE application problems arising from optimal mass transport, semigeostrophic flow, and stochastic optimal control from mathematical finance. By addressing the challenging numerical PDE problems and establishing fundamental numerical fully nonlinear PDE methodologies and theories, this project will have a significant theoretical and practical impact to the emerging field of numerical fully nonlinear PDEs and to computational and applied mathematics at large. The new numerical techniques can be used to solve various fully nonlinear PDE problems arising from differential geometry, antenna design, astrophysics, geophysical fluid dynamics, image processing, mathematical finance, optimal mass transport, and stochastic optimal control.
全非线性二阶椭圆偏微分方程 (PDE) 源自许多科学和工程应用,例如微分几何、天线设计、天体物理学、地球物理流体动力学、图像处理、数学金融、最优质量传递和随机最优控制。这些偏微分方程是最难分析研究和数值求解的偏微分方程。应用中经常出现两种主要且不同类型的完全非线性二阶偏微分方程,即 Monge-Ampere (MA) 型偏微分方程和 Hamilton-Jacobi-Bellman (HJB) 型偏微分方程。它们具有非常不同的结构并且来自不同的应用领域。然而,PI 研究小组最近的一项发现发现,这两类偏微分方程密切相关。这一发现为利用和调整 HJB 型偏微分方程相对丰富的数值方法和技术来求解 MA 型偏微分方程打开了一扇大门,并为弥合这两类主要的完全非线性偏微分方程之间数值方法的差距提供了可能。它还提供了对两类完全非线性偏微分方程现有数值方法的优点和缺点的更深入的了解。该研究项目的教育部分是吸引和培训两名研究生发展必要的应用和计算数学知识和技能,以便他们能够在不久的将来在学术界或工业界追求成功的职业生涯。在该项目中,PI 将为 MA 型和 HJB 型全非线性偏微分方程开发有效的数值方法。 PI 将在该项目中实现以下目标:(1)为一般 MA 型方程建立等效(在粘度意义上)HJB 重构,特别是针对最优传质的 MA 型偏微分方程和抛物线 MA -类型偏微分方程; (2) 系统地开发了适用于 HJB 型和 MA 型偏微分方程的高阶半拉格朗日方法和框架,该方法和框架利用了宽模板有限差分法、非结构三角有限元和间断伽辽金 (DG) 方法的优点。 (3) 基于一些新的广义数值单调性概念,开发收敛窄模板有限差分、有限元和 DG 方法以及 HJB 型和 MA 型全非线性偏微分方程框架; (4) 通过考虑和开发随机 MA 型和 HJB 型 PDE 的有效数值方法,将不确定性纳入完全非线性 PDE 模型; (5) 将预期的数值方法应用于数学金融中的最优质量传输、半地转流和随机最优控制所产生的完全非线性偏微分方程应用问题。通过解决具有挑战性的数值 PDE 问题并建立基本的数值全非线性 PDE 方法和理论,该项目将对数值全非线性 PDE 的新兴领域以及整个计算和应用数学产生重大的理论和实践影响。新的数值技术可用于解决由微分几何、天线设计、天体物理学、地球物理流体动力学、图像处理、数学金融、最优质量传输和随机最优控制引起的各种完全非线性偏微分方程问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaobing Feng其他文献

DNNTune
DNNT调整
ReCBuLC: Reproducing Concurrency Bugs Using Local Clocks
ReCBuLC:使用本地时钟重现并发错误
Modeling and compensation of comprehensive errors for thin-walled parts machining based on on-machine measurement
基于在机测量的薄壁零件加工综合误差建模与补偿
Front Cover: Proteomes and Phosphoproteomes of Anther and Pollen: Availability and Progress
封面:花药和花粉的蛋白质组和磷酸化蛋白质组:可用性和进展
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zaibao Zhang;Menghui Hu;Xiaobing Feng;Andong Gong;Lin Cheng;Hongyu Yuan
  • 通讯作者:
    Hongyu Yuan
Automatic Breakpoint Generating Approach Based on Minimum Debugging Frontier Set: Automatic Breakpoint Generating Approach Based on Minimum Debugging Frontier Set
基于最小调试前沿集的自动断点生成方法:基于最小调试前沿集的自动断点生成方法
  • DOI:
    10.3724/sp.j.1001.2013.04310
  • 发表时间:
    2014-01-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feng Li;Wei Huo;Congming Chen;Long Li;Lujie Zhong;Xiaobing Feng
  • 通讯作者:
    Xiaobing Feng

Xiaobing Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaobing Feng', 18)}}的其他基金

Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
  • 批准号:
    2309626
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Efficient Numerical Methods and Algorithms for Nonlinear Stochastic Partial Differential Equations
非线性随机偏微分方程的高效数值方法和算法
  • 批准号:
    2012414
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Novel Discontinuous Galerkin Finite Element Methods for Second Order Fully Nonlinear Equations and High Frequency Wave Equations
二阶完全非线性方程和高频波动方程的新型间断伽辽金有限元方法
  • 批准号:
    1318486
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Conference: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations
会议:偏微分方程不连续伽辽金有限元方法的最新进展
  • 批准号:
    1203237
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Numerical Methods and Algorithms for Fully Nonlinear Second Order Evolution Equations with Applications
全非线性二阶演化方程的数值方法和算法及其应用
  • 批准号:
    1016173
  • 财政年份:
    2010
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Numerical Methods and Algorithms for Second Order Fully Nonlinear Partial Differential Equations
二阶完全非线性偏微分方程的数值方法和算法
  • 批准号:
    0710831
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
International Workshop on Computational Methods in Geosciences
地球科学计算方法国际研讨会
  • 批准号:
    0715713
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Computational Challenges in Geometrical Flows: Numerical Methods and Analysis, Algorithmic Development and Software Engineering
几何流中的计算挑战:数值方法和分析、算法开发和软件工程
  • 批准号:
    0410266
  • 财政年份:
    2004
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
The Barrett Lectures May, 2001 "New Directions and Developments in Computational Mathematics
巴雷特讲座,2001 年 5 月“计算数学的新方向和发展
  • 批准号:
    0107159
  • 财政年份:
    2001
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

孔隙弹性介质中半变分不等式问题及其高效数值解耦方法
  • 批准号:
    12371407
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
碳酸盐岩油藏酸化反应溶蚀机理及数值模拟降阶方法研究
  • 批准号:
    52374036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
血流非牛顿流固耦合模型的高效并行数值求解方法研究
  • 批准号:
    12371436
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
外透射特征值问题的数值方法和应用
  • 批准号:
    12371389
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
页岩气藏注CO2数值模拟中孔隙尺度模型与连续模型耦合方法研究
  • 批准号:
    52304051
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a panel of multiplex biomarkers for the early detection of pancreatic ductal adenocarcinoma and high-risk lesions
开发一组多重生物标志物,用于早期检测胰腺导管腺癌和高危病变
  • 批准号:
    10642409
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
BCC for Prostate Cancer: Discovery and Translation of Biomarkers for Clinical Unmet Needs
前列腺癌的 BCC:发现和转化生物标志物以满足临床未满足的需求
  • 批准号:
    10701245
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
  • 批准号:
    2309626
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Immune control and genomic instability at micronuclei
微核的免疫控制和基因组不稳定性
  • 批准号:
    10544747
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
Novel Decompositions and Fast Numerical Methods for Peridynamics
近场动力学的新颖分解和快速数值方法
  • 批准号:
    2108588
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了