Numerical Methods and Algorithms for Fully Nonlinear Second Order Evolution Equations with Applications

全非线性二阶演化方程的数值方法和算法及其应用

基本信息

  • 批准号:
    1016173
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-15 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

Fully nonlinear second order partial differential equations (PDEs) are referred to a class of nonlinear second order PDEs which are nonlinear in (at least one) second order partial derivatives of unknown functions. Such a class of PDEs arise from many scientific and engineering fields including astrophysics, differential geometry, geostrophic fluid dynamics, image processing, kinetic theory, materials science, mass transportation, meteorology, and optimal control. They constitute the most difficult class of PDEs to analyze analytically and to approximate numerically. Building on the PI's recent success on developing convergent and efficient numerical methods and algorithms for fully nonlinear second order (time-independent) elliptic PDEs, the proposed research project intends to carry out a comprehensive and systematic study of numerical methods and algorithms for fully nonlinear second order (time-dependent) evolution PDEs. The objectives of the proposed research include (i) to develop the vanishing moment method and the moment solution theory for fully nonlinear second order evolution PDEs, (ii) to develop fully discrete Galerkin type numerical methods (e.g. finite element methods, mixed finite element methods, spectral and discontinuous Galerkin methods) for fully nonlinear second order evolution PDEs based on the vanishing moment methodology, (iii) to apply and/or to adapt the developed numerical methods to a number of emerging application problems which are governed by fully nonlinear second order PDEs, (iv) to develop computer codes for implementing the proposed numerical methods. As numerical approximations of fully nonlinear second order evolution PDEs is an untouched sub-area within the numerical PDEs and those PDEs arise from many important applications in astrophysics, differential geometry, geostrophic fluid dynamics, image processing, kinetic theory, materials science, mass transportation, meteorology, and optimal control, the completion of the proposed research project is expected to have a profound impact on solving this class of PDEs and on providing the much needed capability and enabling tools for solving a range of important application problems which are governed by fully nonlinear second order PDEs. As a by-product, the moment solution theory is expected to give some insights to our understanding of the viscosity solution theory, and might be very likely to provide a logical and natural generalization and extension for the viscosity solution theory which is not natural and neither practical from the computational point of view. The educational component of this project is to engage and train graduate students in developing necessary applied and computational mathematics knowledge and skills so that they can pursue a successful career in science and engineering in the future.
全非线性二阶偏微分方程(PDE)是指一类非线性二阶偏微分方程,其在未知函数的(至少一个)二阶偏导数上呈非线性。此类偏微分方程源自许多科学和工程领域,包括天体物理学、微分几何、地转流体动力学、图像处理、动力学理论、材料科学、大众运输、气象学和最优控制。它们构成了最难进行分析分析和数值近似的偏微分方程。基于PI最近在开发全非线性二阶(与时间无关)椭圆偏微分方程的收敛和高效数值方法和算法方面取得的成功,拟议的研究项目旨在对全非线性二阶(与时间无关)椭圆偏微分方程的数值方法和算法进行全面和系统的研究阶次(时间相关)演化偏微分方程。本研究的目标包括(i)开发完全非线性二阶演化偏微分方程的消失矩法和矩解理论,(ii)开发完全离散伽辽金型数值方法(例如有限元法、混合有限元法) ,谱和不连续伽辽金方法)用于基于消失矩方法的完全非线性二阶演化偏微分方程,(iii)应用和/或使开发的数值方法适应许多由完全非线性二阶控制的新兴应用问题偏微分方程,(iv) 开发计算机代码以实现所提出的数值方法。 由于完全非线性二阶演化偏微分方程的数值近似是数值偏微分方程中未触及的子区域,并且这些偏微分方程源自天体物理学、微分几何、地转流体动力学、图像处理、动力学理论、材料科学、大众运输等领域的许多重要应用,气象学和最优控制,拟议研究项目的完成预计将对解决此类偏微分方程产生深远的影响,并为解决一系列重要的应用问题提供急需的能力和支持工具,这些问题包括:由完全非线性二阶偏微分方程控制。作为副产品,矩解理论有望为我们对粘度解理论的理解提供一些见解,并且很可能为粘度解理论提供逻辑和自然的概括和扩展,而这既不是自然的,也不是从计算的角度来看很实用。该项目的教育部分是吸引和培训研究生发展必要的应用和计算数学知识和技能,以便他们将来能够在科学和工程领域取得成功的职业生涯。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaobing Feng其他文献

DNNTune
DNNT调整
ReCBuLC: Reproducing Concurrency Bugs Using Local Clocks
ReCBuLC:使用本地时钟重现并发错误
Modeling and compensation of comprehensive errors for thin-walled parts machining based on on-machine measurement
基于在机测量的薄壁零件加工综合误差建模与补偿
Front Cover: Proteomes and Phosphoproteomes of Anther and Pollen: Availability and Progress
封面:花药和花粉的蛋白质组和磷酸化蛋白质组:可用性和进展
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zaibao Zhang;Menghui Hu;Xiaobing Feng;Andong Gong;Lin Cheng;Hongyu Yuan
  • 通讯作者:
    Hongyu Yuan
Automatic Breakpoint Generating Approach Based on Minimum Debugging Frontier Set: Automatic Breakpoint Generating Approach Based on Minimum Debugging Frontier Set
基于最小调试前沿集的自动断点生成方法:基于最小调试前沿集的自动断点生成方法
  • DOI:
    10.3724/sp.j.1001.2013.04310
  • 发表时间:
    2014-01-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feng Li;Wei Huo;Congming Chen;Long Li;Lujie Zhong;Xiaobing Feng
  • 通讯作者:
    Xiaobing Feng

Xiaobing Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaobing Feng', 18)}}的其他基金

Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
  • 批准号:
    2309626
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Efficient Numerical Methods and Algorithms for Nonlinear Stochastic Partial Differential Equations
非线性随机偏微分方程的高效数值方法和算法
  • 批准号:
    2012414
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations
全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法
  • 批准号:
    1620168
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Novel Discontinuous Galerkin Finite Element Methods for Second Order Fully Nonlinear Equations and High Frequency Wave Equations
二阶完全非线性方程和高频波动方程的新型间断伽辽金有限元方法
  • 批准号:
    1318486
  • 财政年份:
    2013
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Conference: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations
会议:偏微分方程不连续伽辽金有限元方法的最新进展
  • 批准号:
    1203237
  • 财政年份:
    2012
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Numerical Methods and Algorithms for Second Order Fully Nonlinear Partial Differential Equations
二阶完全非线性偏微分方程的数值方法和算法
  • 批准号:
    0710831
  • 财政年份:
    2007
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
International Workshop on Computational Methods in Geosciences
地球科学计算方法国际研讨会
  • 批准号:
    0715713
  • 财政年份:
    2007
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Computational Challenges in Geometrical Flows: Numerical Methods and Analysis, Algorithmic Development and Software Engineering
几何流中的计算挑战:数值方法和分析、算法开发和软件工程
  • 批准号:
    0410266
  • 财政年份:
    2004
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
The Barrett Lectures May, 2001 "New Directions and Developments in Computational Mathematics
巴雷特讲座,2001 年 5 月“计算数学的新方向和发展
  • 批准号:
    0107159
  • 财政年份:
    2001
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

新型数值方法和高频算法混合集成技术
  • 批准号:
    62231021
  • 批准年份:
    2022
  • 资助金额:
    291 万元
  • 项目类别:
    重点项目
非定常Ginzburg-Landau方程的无条件稳定的保结构数值方法
  • 批准号:
    12126318
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
密集追踪数据动态建模新方法:数值优化算法及样本量设计
  • 批准号:
    32171089
  • 批准年份:
    2021
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
时间分数阶扩散-波动方程的数值算法研究
  • 批准号:
    11901410
  • 批准年份:
    2019
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
非线性时间分数阶反应扩散方程爆破问题的高效数值算法研究
  • 批准号:
    11901266
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
  • 批准号:
    23K03232
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithms and Numerical Methods for Optimization with Partial Differential Equation Constraints
偏微分方程约束优化的算法和数值方法
  • 批准号:
    2110263
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Analyzing Streaming Multi-Sensor Data to Predict Stroke in Preterm Babies
分析流式多传感器数据以预测早产儿中风
  • 批准号:
    10250034
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
  • 批准号:
    2110768
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
  • 批准号:
    2110774
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了