Conference: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations

会议:偏微分方程不连续伽辽金有限元方法的最新进展

基本信息

  • 批准号:
    1203237
  • 负责人:
  • 金额:
    $ 2.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-02-01 至 2013-01-31
  • 项目状态:
    已结题

项目摘要

The principal investigator (PI) and Co-PIs organize the 2012 John H. Barrett Memorial Lectures in the University of Tennessee at Knoxville from May 9-11, 2012 (www.math.utk.edu/~xfeng/barrett/). The Barrett Lectures have been held annually since 1972. Each year a different topic is chosen, representing the research interests of the mathematics faculty of the University of Tennessee. Since 1993, the lectures have consisted of three one-hour survey talks by each of two or three leading researchers representing different themes and directions in a single field. The topic of the 2012 Barrett Lectures is: ``Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations". The main speakers of the 2012 Barrett Lectures are Franco Brezzi of University of Pavia(Italy) and Chi-Wang Shu of Brown University. Each of them will deliver three one-hour survey lectures on recent developments in discontinuous Galerkin finite element methods with respective emphases on interior penalty and local discontinuous Galerkin methods. In addition to the main speakers, ten speakers are also invited to give one-hour talks on topics related to one of the main lectures and on applications of discontinuous Galerkin finite element methods to hyperbolic conservation laws and Hamilton-Jacobi equations, convection-diffusion equations, shallow water equations, porous media flows, elasticity, high frequency wave equations, and materials phase transitions. Moreover, a poster session is also scheduled in the Lectures, giving the opportunity to those who attend the meeting to present their work in these areas.The Barrett Lectures are partly funded by a grant from the University of Tennessee and have often received additional support from the National Science Foundation. They attract wide interest, with an audience of between 40 and 60 participants from the whole country, in addition to faculty and students from Knoxville and the Oak Ridge National Laboratory. They represent one of the few long standing lecture series in mathematics in the southeastern United States. The main objective of the 2012 Barrett Lectures is to provide the participants with an exposition of modern discontinuous Galerkin finite element methods for partial differential equations arising from various scientific/engineering/industrial applications, through in-depth survey lectures and informal discussions with the leading researchers in the field. Additional goals are to foster interdisciplinary collaboration, particularly with researchers in the domain sciences departments and in the College of Engineering at the University of Tennessee and several other southeastern institutions, and to generate a set of written surveys in the subject, which the organizing committee will endeavor to have published in book form. The fund being requested from the NSF will be spent providing partial support towards travel and accommodation for thirty graduate students, postdocs, and junior researchers who do not have research grants.
首席研究员 (PI) 和副研究员于 2012 年 5 月 9 日至 11 日在诺克斯维尔田纳西大学组织了 2012 年 John H. Barrett 纪念讲座 (www.math.utk.edu/~xfeng/barrett/)。巴雷特讲座自 1972 年以来每年举办一次。每年都会选择一个不同的主题,代表田纳西大学数学系的研究兴趣。自 1993 年以来,讲座由三场一小时的调查演讲组成,每场由两到三名顶尖研究人员代表同一领域的不同主题和方向。 2012年巴雷特讲座的主题是:“偏微分方程的间断伽辽金有限元法的最新进展”。2012年巴雷特讲座的主讲人是意大利帕维亚大学的Franco Brezzi和布朗大学的Chi-Wang Shu他们每人将分别就不连续伽辽金有限元方法的最新发展进行三场一小时的调查讲座。强调内罚和局部不连续伽辽金方法 除了主讲人外,还邀请了十位演讲者就与主讲之一相关的主题以及不连续伽辽金有限元方法在双曲守恒定律中的应用进行一小时的演讲。和哈密尔顿-雅可比方程、对流扩散方程、浅水方程、多孔介质流动、弹性、高频波动方程和材料相变此外,讲座中还安排了海报会议,为参加会议的人提供展示他们在这些领域的工作的机会。巴雷特讲座的部分资金来自田纳西大学的资助,并且经常得到国家科学基金会的额外支持。它们吸引了广泛的兴趣,除了来自诺克斯维尔和橡树岭国家实验室的教师和学生外,还有来自全国各地的 40 至 60 名参与者。它们是美国东南部为数不多的长期数学讲座系列之一。 2012 年 Barrett 讲座的主要目标是通过深入的调查讲座以及与领先研究人员的非正式讨论,向参与者展示现代不连续伽辽金有限元方法,用于解决各种科学/工程/工业应用中产生的偏微分方程在外地。其他目标是促进跨学科合作,特别是与田纳西大学领域科学系和工程学院以及其他几个东南部机构的研究人员的合作,并生成一系列该主题的书面调查,组委会将力争以书籍形式出版。向 NSF 申请的资金将用于为 30 名没有研究补助金的研究生、博士后和初级研究人员提供部分旅行和住宿支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaobing Feng其他文献

Improving Speech Recognition Accuracy of Local POI Using Geographical Models
利用地理模型提高本地 POI 的语音识别精度
Optical measurement of surface topographies with transparent coatings
透明涂层表面形貌的光学测量
  • DOI:
    10.1016/j.optlaseng.2019.04.018
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Xiaobing Feng;N. Senin;Rong Su;S. Ramasamy;R. Leach
  • 通讯作者:
    R. Leach
Panthera: holistic memory management for big data processing over hybrid memories
Panthera:通过混合内存进行大数据处理的整体内存管理
Ethylene regulates aerenchyma formation in cotton under hypoxia stress by inducing the accumulation of reactive oxygen species
乙烯通过诱导活性氧的积累来调节缺氧胁迫下棉花通气组织的形成
  • DOI:
    10.1016/j.envexpbot.2022.104826
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    R. Pan;S. Buitrago;Xiaobing Feng;Aibing Hu;Meixue Zhou;Wenying Zhang
  • 通讯作者:
    Wenying Zhang
Fast Convolution Meets Low Precision: Exploring Efficient Quantized Winograd Convolution on Modern CPUs
快速卷积与低精度的结合:探索现代 CPU 上的高效量化 Winograd 卷积

Xiaobing Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaobing Feng', 18)}}的其他基金

Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
  • 批准号:
    2309626
  • 财政年份:
    2023
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Continuing Grant
Efficient Numerical Methods and Algorithms for Nonlinear Stochastic Partial Differential Equations
非线性随机偏微分方程的高效数值方法和算法
  • 批准号:
    2012414
  • 财政年份:
    2020
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations
全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法
  • 批准号:
    1620168
  • 财政年份:
    2016
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Continuing Grant
Novel Discontinuous Galerkin Finite Element Methods for Second Order Fully Nonlinear Equations and High Frequency Wave Equations
二阶完全非线性方程和高频波动方程的新型间断伽辽金有限元方法
  • 批准号:
    1318486
  • 财政年份:
    2013
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Numerical Methods and Algorithms for Fully Nonlinear Second Order Evolution Equations with Applications
全非线性二阶演化方程的数值方法和算法及其应用
  • 批准号:
    1016173
  • 财政年份:
    2010
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Continuing Grant
Numerical Methods and Algorithms for Second Order Fully Nonlinear Partial Differential Equations
二阶完全非线性偏微分方程的数值方法和算法
  • 批准号:
    0710831
  • 财政年份:
    2007
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
International Workshop on Computational Methods in Geosciences
地球科学计算方法国际研讨会
  • 批准号:
    0715713
  • 财政年份:
    2007
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Computational Challenges in Geometrical Flows: Numerical Methods and Analysis, Algorithmic Development and Software Engineering
几何流中的计算挑战:数值方法和分析、算法开发和软件工程
  • 批准号:
    0410266
  • 财政年份:
    2004
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
The Barrett Lectures May, 2001 "New Directions and Developments in Computational Mathematics
巴雷特讲座,2001 年 5 月“计算数学的新方向和发展
  • 批准号:
    0107159
  • 财政年份:
    2001
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant

相似国自然基金

曲面双曲守恒律方程的时间连续最近点方法
  • 批准号:
    12301530
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
最近两个冰期旋回东亚夏季风与西风相互作用的模拟研究
  • 批准号:
    42171152
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
季风边缘区:理解最近130ka以来中国半干旱-半湿润过渡带的环境变化
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    39.9 万元
  • 项目类别:
季风边缘区:理解最近130ka以来中国半干旱—半湿润过渡带的环境变化
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
最近5000年中国西北干旱区果树利用及环境适应的木材记录研究
  • 批准号:
    42002202
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Recent Developments and Future Directions in Nonlinear Dispersive and Wave Equations
会议:非线性色散和波动方程的最新进展和未来方向
  • 批准号:
    2328459
  • 财政年份:
    2023
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Conference: Recent Developments and Future Directions in Nonlinear Dispersive and Wave Equations
会议:非线性色散和波动方程的最新进展和未来方向
  • 批准号:
    2328459
  • 财政年份:
    2023
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Conference on Recent Developments in Continuum Mechanics and Partial Differential Equations
连续介质力学和偏微分方程最新发展会议
  • 批准号:
    1500939
  • 财政年份:
    2015
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Conference on "Harmonic Analysis and Partial Differential Equations: Recent Developments and Future Directions"
“调和分析和偏微分方程:最新进展和未来方向”会议
  • 批准号:
    1402227
  • 财政年份:
    2014
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
Recent Developments in Higher Dimensional Algebraic Geometry Conference
高维代数几何会议的最新进展
  • 批准号:
    0515842
  • 财政年份:
    2006
  • 资助金额:
    $ 2.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了