Polygonal and Polyhedral Elements as a New Computational Paradigm to Study Soft Materials
多边形和多面体单元作为研究软材料的新计算范式
基本信息
- 批准号:1624232
- 负责人:
- 金额:$ 38.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern advances in materials science have revealed that soft organic solids --- such as electro- and magneto-active elastomers, gels, and shape-memory polymers --- hold tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, processability into arbitrary shapes, and unique capability to undergo large reversible deformations. The realization of this potential has prompted an upsurge in the computational microscopic and mesoscopic studies of soft materials with the objectives of quantitatively understanding their behavior from the bottom up and ultimately guiding their optimization and actual use in technological applications. Almost all of these studies have made use of standard finite elements, which have repeatedly proved unable to simulate processes involving realistically large deformations. The graduate students involved in the project will benefit from the collaborative computational/theoretical character of the research. Concepts developed from this interdisciplinary research will be adapted into the curriculum and will positively impact engineering education.The main objective of this project is to put forward a new computational technology with the capability to study soft solids undergoing realistically large deformations. A second objective is to deploy this technology to study the nonlinear elastic response of soft solids with complex particulate microstructures (e.g. elastomers reinforced with anisotropic filler particles), ubiquitous in many soft active material systems. From a conceptual point of view, this will be accomplished by making use of mimetic inspired methods (which preserve the underlying properties of physical and mathematical models, thereby improving the predictive capability of computer simulations) to put forward a new discretization approach for arbitrarily shaped elements under finite deformations in the context of finite element and virtual element methods. This work involves collaboration with the University of Milan and Los Alamos National Laboratory.
材料科学的现代进步表明,柔软的有机固体 - 例如电动和磁性弹性体,凝胶和形状 - 内存聚合物 - 具有巨大的潜力,可以启用新的高端技术,尤其是下一代传感器和执行器,其较低的成本与它们的生物兼容性相同,可加工性地兼容,独特的型号和独特的能力,并具有独特的能力。这种潜力的实现促使对软材料的计算显微镜和介观研究促进了人们的介绍,其目的是定量地理解其行为从自下而上,并最终指导其在技术应用中的优化和实际使用。几乎所有这些研究都利用了标准有限元素,这些元素反复被证明无法模拟涉及现实变形的过程。参与该项目的研究生将受益于研究的协作计算/理论特征。从这项跨学科研究开发的概念将适应课程,并将对工程教育产生积极影响。该项目的主要目的是提出一项新的计算技术,能够研究经历现实变形的软固体。第二个目标是部署这项技术,以研究具有复杂颗粒微结构的软固体的非线性弹性响应(例如,在许多软活动材料系统中无处不在的各向异性填充物颗粒增强的弹性体弹性体)。从概念的角度来看,这将通过利用模拟启发的方法(保留物理和数学模型的潜在属性,从而提高计算机模拟的预测能力)来实现这一目标,从而提高了在有限元元素和虚拟元素方法的有限型元素下的任意形状元素的新离散方法。这项工作涉及与米兰大学和洛斯阿拉莫斯国家实验室合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Glaucio Paulino的其他基金
Tunable Tensegrity Structures and Metamaterials
可调谐张拉整体结构和超材料
- 批准号:23232762323276
- 财政年份:2024
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
- 批准号:23234152323415
- 财政年份:2024
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Standard GrantStandard Grant
Bridging Locally Stress‐Constrained Topology Optimization and Additive Manufacturing
桥接局部应力——约束拓扑优化和增材制造
- 批准号:21058112105811
- 财政年份:2021
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Standard GrantStandard Grant
GOALI: Building Engineering Through Topology Optimization
GOALI:通过拓扑优化构建工程
- 批准号:15595941559594
- 财政年份:2015
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Standard GrantStandard Grant
Geometric Mechanics of Cellular Origami Assemblages
细胞折纸组合的几何力学
- 批准号:15388301538830
- 财政年份:2015
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Standard GrantStandard Grant
Polygonal and Polyhedral Elements as a New Computational Paradigm to Study Soft Materials
多边形和多面体单元作为研究软材料的新计算范式
- 批准号:14375351437535
- 财政年份:2014
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Standard GrantStandard Grant
EAGER: Mapping Fragmentation and Topology Optimization Concepts to GPUs
EAGER:将碎片和拓扑优化概念映射到 GPU
- 批准号:13216611321661
- 财政年份:2013
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Standard GrantStandard Grant
GOALI: Building Engineering Through Topology Optimization
GOALI:通过拓扑优化构建工程
- 批准号:13351601335160
- 财政年份:2013
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Standard GrantStandard Grant
Structural Optimization for Buildings under Stochastic Excitations
随机激励下建筑物的结构优化
- 批准号:12342431234243
- 财政年份:2012
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Standard GrantStandard Grant
Student Paper Competition at the Conference of the International Association for Boundary Element Methods; May 24-26, 2004; Minneapolis, MN
国际边界元方法协会会议学生论文竞赛;
- 批准号:04240320424032
- 财政年份:2004
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
多面体网格生成及高阶形函数构造方法研究
- 批准号:62372389
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于酰腙键的阴离子配位多面体笼的合成与其主客体性质研究
- 批准号:22301232
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多面体取向调控姜—泰勒畸变构建超长循环寿命锰基氧化物正极
- 批准号:22309088
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
水溶性金属有机多面体材料的制备及其在二氧化碳绿色转化中的应用探索
- 批准号:22302136
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒区铁路脏污道砟力学特性的扩展多面体离散元方法及试验验证
- 批准号:12302513
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
pブロック元素の孤立電子対による非対称な配位多面体を活用した誘電材料の開拓
利用孤对 p 区元素创建的不对称配位多面体开发介电材料
- 批准号:22K1475622K14756
- 财政年份:2022
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists
Complex quartic differentials on surfaces
曲面上的复四次微分
- 批准号:21K0322821K03228
- 财政年份:2021
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Development of color- and structure-controlled plasmonic nanoparticle catalysts supported on hierarchical porous materials and their catalytic applications
分级多孔材料上颜色和结构控制的等离子体纳米颗粒催化剂的开发及其催化应用
- 批准号:20J1009420J10094
- 财政年份:2020
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Grant-in-Aid for JSPS FellowsGrant-in-Aid for JSPS Fellows
Research on a complexification of hyperbolic tetrahedra
双曲四面体的复化研究
- 批准号:20K2088120K20881
- 财政年份:2020
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Grant-in-Aid for Challenging Research (Exploratory)Grant-in-Aid for Challenging Research (Exploratory)
Submanifold theory related to the twistor space of quaternionic symmetric spaces
与四元对称空间扭量空间相关的子流形理论
- 批准号:20K0357520K03575
- 财政年份:2020
- 资助金额:$ 38.92万$ 38.92万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)