Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
基本信息
- 批准号:2323415
- 负责人:
- 金额:$ 30.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Plates and shells have been used in diverse fields such as civil, mechanical, aeronautical, and marine engineering. A hallmark feature of these structures is their ability to support large loads despite their thin architecture. One such shell structure, responsible for guarding the genome inside our cells, is the nuclear envelope (i.e., the boundary of the nucleus). This structure has a unique geometry comprised of two concentric hollow spherical shells fused at thousands of sites with torus-shaped holes, and exhibits one order of magnitude amplification in flexural stiffness. Inspired by this finding, this study investigates a new class of optimal biomimetic shell structures, termed torenes, comprising concentric shell layers fused with torus-shaped holes. The torene architecture could enable new designs in aircrafts, submarines, and rockets to achieve high resilience in countering extreme natural forces. The discovered principles can guide the design of lightweight prosthetics, and protective gear for defense personnel and athletes to counter high impact loads. The research findings will be disseminated by hands-on pedagogical demonstrations, scientoons (science-based cartoons), virtual mechanics labs, journal publications and guest lectures for high school students. While advancing the field of architected plates and shells, the research will engage and train a diverse group of students, including those from underrepresented groups. Poised at the interface of mechanics, geometry, and optimization, the research will investigate the mechanical properties and failure mechanisms of plate and shell structures with ultra-high genus. The study will perform finite element analyses to investigate force-deformation response and stability of torene structures under in-plane and out-of-plane loadings. This information will be used to construct proper objective functions and constraints to perform topology optimization of multilayer plates and shells. In particular, numerical optimization will be used to identify topologies that maximize performance of torene structures under different external loads and functional requirements. The study will apply the discovered geometric principles to design and experimentally test 3D torene architectures derived from 2D materials for achieving ultra-flexural stiffness. Overall, the work will disentangle the roles of differential geometry and associated geometric parameters in modulating the strength and stability of a new class of topological structures. This approach allows an investigation of structures at different length scales leading to the determination of scaling laws and scaling invariance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
板和贝壳已用于民用,机械,航空和海洋工程等各种领域。这些结构的标志性功能是尽管建筑较薄,但它们能够支持大量负载。一种壳结构,负责保护细胞内的基因组,是核包膜(即核的边界)。该结构具有独特的几何形状,包括两个同心空心球形壳,这些球形壳在数千个带有圆环孔的位置融合,并在弯曲刚度中显示一个数量级扩增的顺序。受这一发现的启发,这项研究研究了一类新的最佳仿生壳结构,称为Torenes,包括与圆环形孔融合的同心壳层。 Torene架构可以在飞机,潜艇和火箭弹中实现新设计,以在应对极端自然力量方面具有很高的韧性。发现的原则可以指导轻巧的假肢设计,并为国防人员和运动员的防护装备来应对高撞击负荷。研究发现将通过动手教学演示,科学漫画(基于科学的动画片),虚拟力学实验室,期刊出版物和高中生的来宾演讲来传播。在促进架构板和炮弹领域的过程中,该研究将吸引和培训各种各样的学生,包括来自代表性不足的团体的学生。 该研究将在力学,几何形状和优化的界面上进行,因此将研究具有超高属的板和壳结构的机械性能和破坏机制。该研究将进行有限元分析,以研究在面板内和平面外载荷下托莱烯结构的强制性响应和稳定性。该信息将用于构建正确的目标功能和约束,以执行多层板和外壳的拓扑优化。特别是,数值优化将用于确定在不同的外部负载和功能要求下最大化Torene结构的性能的拓扑。该研究将应用发现的几何原理来设计和实验测试源自2D材料的3D Torene架构,以实现超纤维性刚度。总体而言,这项工作将消除差异几何形状和相关几何参数调节新拓扑结构的强度和稳定性的作用。这种方法允许对不同长度尺度的结构进行调查,从而确定缩放定律和缩放不变性。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估值得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glaucio Paulino其他文献
Glaucio Paulino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Glaucio Paulino', 18)}}的其他基金
Tunable Tensegrity Structures and Metamaterials
可调谐张拉整体结构和超材料
- 批准号:
2323276 - 财政年份:2024
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
Bridging Locally Stress‐Constrained Topology Optimization and Additive Manufacturing
桥接局部应力——约束拓扑优化和增材制造
- 批准号:
2105811 - 财政年份:2021
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
GOALI: Building Engineering Through Topology Optimization
GOALI:通过拓扑优化构建工程
- 批准号:
1559594 - 财政年份:2015
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
Geometric Mechanics of Cellular Origami Assemblages
细胞折纸组合的几何力学
- 批准号:
1538830 - 财政年份:2015
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
Polygonal and Polyhedral Elements as a New Computational Paradigm to Study Soft Materials
多边形和多面体单元作为研究软材料的新计算范式
- 批准号:
1624232 - 财政年份:2015
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
Polygonal and Polyhedral Elements as a New Computational Paradigm to Study Soft Materials
多边形和多面体单元作为研究软材料的新计算范式
- 批准号:
1437535 - 财政年份:2014
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
EAGER: Mapping Fragmentation and Topology Optimization Concepts to GPUs
EAGER:将碎片和拓扑优化概念映射到 GPU
- 批准号:
1321661 - 财政年份:2013
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
GOALI: Building Engineering Through Topology Optimization
GOALI:通过拓扑优化构建工程
- 批准号:
1335160 - 财政年份:2013
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
Structural Optimization for Buildings under Stochastic Excitations
随机激励下建筑物的结构优化
- 批准号:
1234243 - 财政年份:2012
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
Student Paper Competition at the Conference of the International Association for Boundary Element Methods; May 24-26, 2004; Minneapolis, MN
国际边界元方法协会会议学生论文竞赛;
- 批准号:
0424032 - 财政年份:2004
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
相似国自然基金
多冗余度机器人的跨层协作神经动力学优化策略研究
- 批准号:62373157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向未知目标协作搬运的黏附型空中作业机器人动力学机理与协调控制研究
- 批准号:52202452
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多机械臂协作系统动力学层级解析建模与协调柔顺控制理论及实验研究
- 批准号:52175083
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
面向信息生态复杂性的群体博弈与协作动力学研究
- 批准号:
- 批准年份:2020
- 资助金额:59 万元
- 项目类别:面上项目
漂浮基刚-柔协作多臂空间机器人动力学与协调控制方法研究
- 批准号:61903215
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
- 批准号:
2336135 - 财政年份:2024
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331296 - 财政年份:2024
- 资助金额:
$ 30.75万 - 项目类别:
Standard Grant