Collaborative Research: A Langevin Subgrid Scale Closure and Discontinuous Galerkin Exascale Large Eddy Simulation of Complex Turbulent Flows
合作研究:复杂湍流的 Langevin 亚网格尺度闭合和不连续 Galerkin 百亿亿次大涡模拟
基本信息
- 批准号:1604142
- 负责人:
- 金额:$ 3.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1603131/1603589/1604142 Givi/Mavriplis/Girimaji Turbulent combustion is encountered in nearly all energy conversion devices, such as internal combustion engines, gas turbines, boilers, and gas burners. Turbulent combustion involves many complex physical and chemical phenomena. The ability to predict accurately the turbulent combustion process is critical to the design and optimization of combustion devices for achieving low emissions and high efficiency. This research will develop accurate computer models and numerical algorithms that can reveal the fundamental turbulent combustion processes and allow industry to design clean combustion devices, thus benefiting the environment. Extensive code development and computer simulations will be conducted. Additionally, this project will also include numerous education and outreach activities, including the development of an Interdisciplinary Computational Science Minor to provide additional courses on high-performance computing, student training in the multidisciplinary field of Computational Modeling and Simulation, K-12 outreach through the INVESTING NOW and CAMP-SOAR programs, and recruitment of students from minority and under-represented groups through the EXCEL program.In an effort to increase the accuracy of turbulent combustion simulation, this award provides funding to develop a new Langevin subgrid scale (SGS) closure and to implement it with a new discontinuous Galerkin numerical scheme for large eddy simulation (LES) of turbulent flows. The former provides accurate modeling of the SGS transport for a wide range of turbulent flows, including compressible and chemically reactive. The combined methodology will be put together in a package in which the available computational cores are utilized in a dynamic, adaptive manner. This is an important concept in high performance computing necessary for massively parallel simulations up to petascale, and towards (future) exascale. The new LES tool will be employed for predictions of several turbulent flows. The computational requirements for the proposed LES, in its most sophisticated form and utilizing the highest intended resolution, will be several orders of magnitude less than that required for direct numerical simulations. When successfully completed, this research will have a significant impact on turbulent combustion research. It will be extremely valuable for both industry and government agencies. The outcome of this work can also positively impact other disciplines, such as climate and atmospheric modeling or bioengineering.
1603131/1603589/1604142 Givi/Mavriplis/Girimaji 几乎所有能量转换装置都会遇到湍流燃烧,例如内燃机、燃气轮机、锅炉和燃气燃烧器。湍流燃烧涉及许多复杂的物理和化学现象。准确预测湍流燃烧过程的能力对于燃烧装置的设计和优化以实现低排放和高效率至关重要。这项研究将开发精确的计算机模型和数值算法,以揭示基本的湍流燃烧过程,并使工业界能够设计清洁的燃烧装置,从而造福于环境。将进行广泛的代码开发和计算机模拟。此外,该项目还将包括大量的教育和推广活动,包括开发跨学科计算科学辅修课程,以提供有关高性能计算的额外课程、计算建模和仿真多学科领域的学生培训、通过 K-12 进行推广INVESTING NOW 和 CAMP-SOAR 计划,以及通过 EXCEL 计划招募少数族裔和代表性不足群体的学生。为了提高湍流燃烧模拟的准确性,该奖项为开发新的 Langevin 次网格尺度 (SGS) 闭合,并使用新的不连续 Galerkin 数值方案来实现它,用于湍流的大涡模拟 (LES)。前者为各种湍流(包括可压缩湍流和化学反应湍流)提供 SGS 输运的精确建模。组合的方法将被放在一个包中,其中以动态、自适应的方式利用可用的计算核心。这是高性能计算中的一个重要概念,对于高达千万亿次乃至(未来)百亿亿次的大规模并行模拟来说是必需的。新的 LES 工具将用于预测多种湍流。所提出的 LES 的计算要求,以其最复杂的形式并利用最高的预期分辨率,将比直接数值模拟所需的计算要求低几个数量级。一旦成功完成,这项研究将对湍流燃烧研究产生重大影响。 这对于行业和政府机构都极具价值。这项工作的成果还可以对其他学科产生积极影响,例如气候和大气建模或生物工程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharath Girimaji其他文献
Sharath Girimaji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sharath Girimaji', 18)}}的其他基金
相似国自然基金
模糊朗之万方程刻画的半导体磁输运机制研究
- 批准号:12361093
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
多稳态广义朗之万模型的噪声诱导共振及应用研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于朗之万模型的动态复杂介质中反常动力学研究
- 批准号:12205154
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非静态环境中随机扩散系数模型的朗之万动力学研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于四维朗之万模型的核裂变动力学研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Langevin Markov Chain Monte Carlo Methods for Machine Learning
合作研究:用于机器学习的朗之万马尔可夫链蒙特卡罗方法
- 批准号:
2053454 - 财政年份:2021
- 资助金额:
$ 3.54万 - 项目类别:
Standard Grant
Collaborative Research: Langevin Markov Chain Monte Carlo Methods for Machine Learning
合作研究:用于机器学习的朗之万马尔可夫链蒙特卡罗方法
- 批准号:
2053485 - 财政年份:2021
- 资助金额:
$ 3.54万 - 项目类别:
Standard Grant
Research on the Basic Properties of Chaotic Loewner Evolution and Its Application to Neuronal Morphology
混沌Loewner进化的基本性质及其在神经形态学中的应用研究
- 批准号:
20J20867 - 财政年份:2020
- 资助金额:
$ 3.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: A Langevin Subgrid Scale Closure and Discontinuous Galerkin Exascale Large Eddy Simulation of Complex Turbulent Flows
合作研究:复杂湍流的 Langevin 亚网格尺度闭合和不连续 Galerkin 百亿亿次大涡模拟
- 批准号:
1603589 - 财政年份:2016
- 资助金额:
$ 3.54万 - 项目类别:
Standard Grant
Collaborative Research: A Langevin Subgrid Scale Closure and Discontinuous Galerkin Exascale Large Eddy Simulation of Complex Turbulent Flows
合作研究:复杂湍流的 Langevin 亚网格尺度闭合和不连续 Galerkin 百亿亿次大涡模拟
- 批准号:
1603131 - 财政年份:2016
- 资助金额:
$ 3.54万 - 项目类别:
Standard Grant