Nonlinear Problems for Highly Deformable Elastic Solids and Structures
高变形弹性固体和结构的非线性问题
基本信息
- 批准号:1613753
- 负责人:
- 金额:$ 36.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns the modeling, analysis, and numerical exploration of deformations of mechanical and biomechanical systems, in particular highly deformable thin-surface structures and solids. These occur naturally in bio-molecular systems and also in man-made thin films and elastomers. Lipid-bilayer membranes are ubiquitous in bio-molecular systems, and the accurate modeling and prediction of their mechanical response under external stimuli is crucial for understanding the behavior of cell function and also that of liposomes, the latter of which can be used as vehicles for nutrient and drug delivery. Likewise, a fundamental understanding of the nonlinear response of highly deformable structures and materials is important, for example, in the design of sensors as well as for many other engineering applications. The research aims to provide new classes of continuum-mechanical models and novel approaches to their mathematical analysis, leading to a quantitative understanding of the behavior of such systems.This project centers on the modeling, computation, and analysis of highly deformable, thin elastic structures and solids. In particular, classes of problems for incompressible solids, thin elastic surfaces, two-phase lipid-bilayer vesicles, and generalized rod models will be addressed. The main goals of the work are: (i) to provide new classes of continuum-mechanics-based models, (ii) to systematically find global equilibria as loading and other parameters vary and assess their stability (local energy minima), and (iii) to identify new phenomena. Goal (ii) entails rigorous existence results as well as systematic numerical computation. In particular, the former will entail addressing new questions in both partial differential equations and the calculus of variations. Goals (i) and (ii) inform and enrich the other; goal (iii) is enabled by goals (i) and (ii). The proposed work is highly interdisciplinary, requiring tools and perspectives from several fields, including nonlinear continuum mechanics, biophysics, materials science, nonlinear elliptic partial differential equations, bifurcation theory, calculus of variations, numerical methods, and symmetry ideas.
该研究项目涉及机械和生物力学系统变形的建模、分析和数值探索,特别是高度变形的薄表面结构和固体。这些天然存在于生物分子系统以及人造薄膜和弹性体中。脂质双层膜在生物分子系统中无处不在,其在外部刺激下的机械响应的准确建模和预测对于理解细胞功能以及脂质体的行为至关重要,后者可用作营养和药物输送。同样,对高变形结构和材料的非线性响应的基本理解也很重要,例如,在传感器的设计以及许多其他工程应用中。该研究旨在提供新类别的连续力学模型及其数学分析的新方法,从而对此类系统的行为进行定量理解。该项目的重点是高度变形的薄弹性结构的建模、计算和分析和固体。特别是,将解决不可压缩固体、薄弹性表面、两相脂质双层囊泡和广义杆模型等问题。这项工作的主要目标是:(i)提供新的基于连续介质力学的模型,(ii)系统地寻找负载和其他参数变化时的全局平衡并评估其稳定性(局部能量最小值),以及(iii) )来识别新现象。目标(ii)需要严格的存在结果以及系统的数值计算。特别是,前者将需要解决偏微分方程和变分法中的新问题。目标 (i) 和 (ii) 相互告知并丰富对方;目标(iii) 是由目标(i) 和(ii) 实现的。拟议的工作是高度跨学科的,需要来自多个领域的工具和观点,包括非线性连续介质力学、生物物理学、材料科学、非线性椭圆偏微分方程、分岔理论、变分法、数值方法和对称思想。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Healey其他文献
Timothy Healey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Healey', 18)}}的其他基金
Modeling, Analysis, and Computation in Nonlinear Elasticity
非线性弹性建模、分析和计算
- 批准号:
2006586 - 财政年份:2020
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Nonlinear Problems for Thin Elastic Structures
薄弹性结构的非线性问题
- 批准号:
1312377 - 财政年份:2013
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Nonlinear Problems of Second-Gradient Elasticity for Multi-Phase Structures and Solids
多相结构和固体的二阶梯度弹性非线性问题
- 批准号:
1007830 - 财政年份:2010
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Multiphase Problems of Nonlinear Elasticity
非线性弹性的多相问题
- 批准号:
0707715 - 财政年份:2007
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Nonlinear Problems of Elasticity for Multiphase Solids and Shells
多相固体和壳的非线性弹性问题
- 批准号:
0406161 - 财政年份:2004
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
Bifurcation Analysis and Computation in Elliptic and Multiphase Problems of Nonlinear Elasticity
非线性弹性椭圆和多相问题的分岔分析与计算
- 批准号:
0072514 - 财政年份:2000
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
Global Continuation Methods in Nonlinear Elasticity
非线性弹性中的全局延拓方法
- 批准号:
9704730 - 财政年份:1997
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Global Continuation Methods in Nonlinear Elasticity
数学科学:非线性弹性中的全局延拓方法
- 批准号:
9625830 - 财政年份:1996
- 资助金额:
$ 36.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Symmetry Methods and Nonlinear Analysis in Elastomechanics
数学科学:弹性力学中的对称方法和非线性分析
- 批准号:
9407738 - 财政年份:1994
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symmetry Methods and Nonlinear Analysis in Elastomechanics
数学科学:弹性力学中的对称方法和非线性分析
- 批准号:
9103254 - 财政年份:1991
- 资助金额:
$ 36.5万 - 项目类别:
Continuing Grant
相似国自然基金
天元数学交流项目--高度非线性的混杂型随机微分方程及相关问题
- 批准号:12126202
- 批准年份:2021
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
基于三维成像雷达高度计的海洋重力场探测关键问题研究
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
分圆多项式的算术性质及相关问题的研究
- 批准号:11801303
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
临近空间大气湍流层顶的若干关键科学问题研究
- 批准号:41875045
- 批准年份:2018
- 资助金额:58.0 万元
- 项目类别:面上项目
动力系统中的高度有界问题
- 批准号:11701508
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fast and accurate algorithms for solving large eigenvalue problems
用于解决大型特征值问题的快速准确的算法
- 批准号:
23K11226 - 财政年份:2023
- 资助金额:
$ 36.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum optimisation for highly constrained problems in customer data science
针对客户数据科学中高度受限问题的量子优化
- 批准号:
2608447 - 财政年份:2021
- 资助金额:
$ 36.5万 - 项目类别:
Studentship
Fast and accurate algorithms for solving eigenvalue problems
用于解决特征值问题的快速准确的算法
- 批准号:
18K11343 - 财政年份:2018
- 资助金额:
$ 36.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The development of a dynamic analytics software platform, which explains the key core dependencies of the vast multifaceted metrology problems within volume manufacturing through a highly visual interactive interface
动态分析软件平台的开发,通过高度可视化的交互界面解释了批量制造中大量多方面计量问题的关键核心依赖关系
- 批准号:
104049 - 财政年份:2018
- 资助金额:
$ 36.5万 - 项目类别:
Collaborative R&D
Highly nonlinear evolutionary problems
高度非线性进化问题
- 批准号:
396311282 - 财政年份:2017
- 资助金额:
$ 36.5万 - 项目类别:
Research Fellowships