Modeling, Analysis, and Computation in Nonlinear Elasticity
非线性弹性建模、分析和计算
基本信息
- 批准号:2006586
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is focused on the mathematical prediction of mechanical behavior in highly deformable elastic structures and solids, including both soft elastic systems and brittle materials. Soft structures occur naturally in biological systems such as skin and bio-membranes and are also manufactured as thin films and elastomers. The prediction of their initial instability, such as wrinkling, and post-critical pattern formation under loading and/or growth play a prominent role in this part of the project. For brittle solids (such as ceramics or steels at low temperature), we will use a new approach to fracture, predicting the initiation and formation of cracks under incremental loading. Overall, the project aims to provide new classes of continuum-mechanical models and novel approaches to their analyses, leading to a quantitative understanding of the mechanical behavior of these systems. The work has a range of potential applications – from bio-molecular structures to engineering machines and structures. This project includes opportunities for the research training of graduate students. Classes of nonlinear models of elastic-surface structures, soft elastic solids, and brittle solids will be analyzed. The main goals of the work are: (i) To provide properly formulated mechanics-based models. (ii) To obtain rigorous mathematical results, viz., establish existence theorems – the only true way to “ensure that the mathematical description of a physical phenomenon is meaningful” (R. Courant). (iii) To detect new phenomena. Goals (i) and (ii) inform and enrich each other; goal (iii) is enabled by goals (i) and (ii). This research is highly interdisciplinary, requiring tools and perspectives from several fields, e.g., nonlinear continuum mechanics, elliptic PDE systems, bifurcation theory, calculus of variations, numerical methods, symmetry ideas and biophysics, while providing new links between them. The project will provide new results and insights pertaining to surface-creasing formation in soft elastic solids, fracture of brittle materials, post-critical growth in elastic solids and pattern formation in lipid-bilayer structures or bio-membranes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是数学T弹性系统和脆性材料。脆性固体(例如陶瓷或低温的钢)的项目,我们将使用新的裂缝启动和形成工作在工程机器和结构上有一系列潜在的应用程序工作的目标是:(i)严格的数学结果(iii)由目标(i)和(ii)启用。项目将在柔软的弹性固体,弹性固体中的POS T临界生长以及脂质双层结构或生物膜中的图案形成中提供新的表面裂隙形成。该奖项反映了NSF'Sf'sf'sf'sf'sf'sf'sf'Sf'story Mission和Sistory Mission and Mission和通过使用Toundation的知识分子优点Meriter影响影响审查标准的评估,人们被认为值得获得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nucleation and Development of Multiple Cracks in Thin Composite Fibers via the Inverse-Deformation Approach
通过反变形方法研究薄复合纤维中多重裂纹的成核和发展
- DOI:10.1007/s10659-023-10019-8
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Gupta, Arnav;Healey, Timothy J.
- 通讯作者:Healey, Timothy J.
The inverse-deformation approach to fracture
断裂的逆变形方法
- DOI:10.1016/j.jmps.2021.104352
- 发表时间:2021
- 期刊:
- 影响因子:5.3
- 作者:Rosakis, Phoebus;Healey, Timothy J.;Alyanak, Uğur
- 通讯作者:Alyanak, Uğur
Energy Minimizing Configurations for Single-Director Cosserat Shells
单导向器 Cosserat 壳的能量最小化配置
- DOI:10.1007/s10659-022-09975-4
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Healey, Timothy J.;Nair, Gokul G.
- 通讯作者:Nair, Gokul G.
Existence of Weak Solutions for Non-Simple Elastic Surface Models
- DOI:10.1007/s10659-021-09840-w
- 发表时间:2020-08
- 期刊:
- 影响因子:2
- 作者:T. Healey
- 通讯作者:T. Healey
A Group-Theoretic Approach to the Bifurcation Analysis of Spatial Cosserat-Rod Frameworks with Symmetry
对称性空间Cosserat-Rod框架分岔分析的群论方法
- DOI:10.1007/s00332-022-09878-7
- 发表时间:2023
- 期刊:
- 影响因子:3
- 作者:Combescure, Christelle J.;Healey, Timothy J.;Treacy, Jay
- 通讯作者:Treacy, Jay
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Healey其他文献
Timothy Healey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Healey', 18)}}的其他基金
Nonlinear Problems for Highly Deformable Elastic Solids and Structures
高变形弹性固体和结构的非线性问题
- 批准号:
1613753 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Nonlinear Problems for Thin Elastic Structures
薄弹性结构的非线性问题
- 批准号:
1312377 - 财政年份:2013
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Nonlinear Problems of Second-Gradient Elasticity for Multi-Phase Structures and Solids
多相结构和固体的二阶梯度弹性非线性问题
- 批准号:
1007830 - 财政年份:2010
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Multiphase Problems of Nonlinear Elasticity
非线性弹性的多相问题
- 批准号:
0707715 - 财政年份:2007
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Nonlinear Problems of Elasticity for Multiphase Solids and Shells
多相固体和壳的非线性弹性问题
- 批准号:
0406161 - 财政年份:2004
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Bifurcation Analysis and Computation in Elliptic and Multiphase Problems of Nonlinear Elasticity
非线性弹性椭圆和多相问题的分岔分析与计算
- 批准号:
0072514 - 财政年份:2000
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Global Continuation Methods in Nonlinear Elasticity
非线性弹性中的全局延拓方法
- 批准号:
9704730 - 财政年份:1997
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Mathematical Sciences: Global Continuation Methods in Nonlinear Elasticity
数学科学:非线性弹性中的全局延拓方法
- 批准号:
9625830 - 财政年份:1996
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Mathematical Sciences: Symmetry Methods and Nonlinear Analysis in Elastomechanics
数学科学:弹性力学中的对称方法和非线性分析
- 批准号:
9407738 - 财政年份:1994
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symmetry Methods and Nonlinear Analysis in Elastomechanics
数学科学:弹性力学中的对称方法和非线性分析
- 批准号:
9103254 - 财政年份:1991
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
相似国自然基金
面向三维服装建模的形状分析与处理方法研究
- 批准号:61462051
- 批准年份:2014
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
适用于复杂外形产品的等几何造型理论及新型分析方法研究
- 批准号:61472111
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
基于拓扑结构分析的实体特征造型理论与方法
- 批准号:61402249
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
复杂曲面造型理论及其在科学计算中的应用
- 批准号:11031007
- 批准年份:2010
- 资助金额:140.0 万元
- 项目类别:重点项目
几何计算中误差分析与控制问题的研究
- 批准号:60273012
- 批准年份:2002
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Computation-assisted discovery of bioactive minor cannabinoids from hemp
计算辅助从大麻中发现生物活性次要大麻素
- 批准号:
10791213 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Collaborative Research: A new diffuse-interface approach to ensemble average solvation energy: modeling, analysis and computation
协作研究:一种新的整体平均溶剂化能的扩散界面方法:建模、分析和计算
- 批准号:
2306992 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: A new diffuse-interface approach to ensemble average solvation energy: modeling, analysis and computation
协作研究:一种新的整体平均溶剂化能的扩散界面方法:建模、分析和计算
- 批准号:
2306991 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
GOALI: CNS: Medium: Communication-Computation Co-Design for Rural Connectivtiy and Intelligence under Nonuniformity: Modeling, Analysis, and Implementation
目标:CNS:媒介:非均匀性下农村互联和智能的通信计算协同设计:建模、分析和实现
- 批准号:
2212565 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Standard Grant