Highly nonlinear evolutionary problems

高度非线性进化问题

基本信息

  • 批准号:
    396311282
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Fellowships
  • 财政年份:
    2017
  • 资助国家:
    德国
  • 起止时间:
    2016-12-31 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

In the project “Highly nonlinear evolutionary problems”, we are mainly concerned with time dependent partial differential equations and minimizing properties. We will treat three different kinds of problems. First, we consider doubly nonlinear parabolic equations, which appear in the modelling of several physical phenomena as, for instance, in plasma physics or the analysis of turbulent filtration of a gas or a liquid through porous media. Those equations also find application in the characterization of ground water problems, heat radiation in plasmas, or the motion of viscous fluids. One main goal of this project is to investigate a self-improving property of solutions of these equations by using the method of Expansion of Positivity.In the last years, the interest in problems that are related with partial differential equations formulated in domains that change in time grew. This is partly due to the fact that a number of problems in mathematical biology are naturally posed on growing domains (e.g. developing organisms or proliferating cells) or domains that evolve in some particular way. There are also some classical engineering applications like fluids or gases in settings as channels or pipes with confining walls that may be displaced, removed or brought in at will. The aim is to show existence results for variational solutions to evolutionary problems that describe these phenomena. The approach will be based on DeGeorgi’s method of minimizing movements.Finally, we will consider functionals with an exponential growth rate. The purpose is to show that parabolic minimizers that are associated to such solutions are in some way smooth, assuming that the growth rate is not “too large”. To prove this, we will make use of a parabolic version of DeGeorgi classes and a variant of the Moser iteration.
在“高度非线性进化问题”中,我们将对待不同的问题,我们认为非线性抛物线方程出现在几种现象中。气体或液体的培养基。统一的扩展是去年的,对与域中的部分方程相关的问题的兴趣会变化的域,部分原因是数学生物学自然是在生长域SMS或增殖细胞上的)或在某些方面,有些经典的工程应用程序,例如流体或气体,作为通道或管道墙,可能会流离失所。我们将以指数的增长速度建设。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local boundedness of weak solutions to the Diffusive Wave Approximation of the Shallow Water equations
  • DOI:
    10.1016/j.jde.2018.08.051
  • 发表时间:
    2019-03-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Singer, Thomas;Vestberg, Matias
  • 通讯作者:
    Vestberg, Matias
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Thomas Singer其他文献

Dr. Thomas Singer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向复杂非线性方程组多根求解的自适应集成进化算法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于自适应差分进化的地震约束条件下的重磁联合反演研究
  • 批准号:
    41904129
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于差分进化算法的非线性区间优化问题的新型求解方法研究
  • 批准号:
    51905257
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于近似最优性条件的鲁棒进化算法及其在需求不确定库存管理的应用
  • 批准号:
    61763008
  • 批准年份:
    2017
  • 资助金额:
    37.0 万元
  • 项目类别:
    地区科学基金项目
多代理模型管理的化工过程多目标鲁棒进化优化研究
  • 批准号:
    61773225
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目

相似海外基金

Evolutionary dynamics and microenvironmental determinants of metastatic breast cancer
转移性乳腺癌的进化动力学和微环境决定因素
  • 批准号:
    10272387
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Evolutionary dynamics and microenvironmental determinants of metastatic breast cancer
转移性乳腺癌的进化动力学和微环境决定因素
  • 批准号:
    10660804
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Statistical mechanics of nonlinear evolutionary dynamics with a large degree of freedom
大自由度非线性演化动力学统计力学
  • 批准号:
    19K03650
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Eco-Evolutionary dynamics of NSCLC to immunotherapy: Response and Resistance
非小细胞肺癌对免疫治疗的生态进化动力学:反应和耐药
  • 批准号:
    10478888
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Eco-Evolutionary dynamics of NSCLC to immunotherapy: Response and Resistance
非小细胞肺癌对免疫治疗的生态进化动力学:反应和耐药
  • 批准号:
    9788320
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了