Nonlinear Problems for Thin Elastic Structures

薄弹性结构的非线性问题

基本信息

  • 批准号:
    1312377
  • 负责人:
  • 金额:
    $ 33.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2016-09-30
  • 项目状态:
    已结题

项目摘要

Healey1312377 The principal investigator and his colleagues study several problems of nonlinear elasticity for thin structures and solids, with applications to multi-phase lipid bilayer vesicles, wrinkling of highly stretched sheets and damage/fracture of solids. The main goals of the work are: (1) provide classes of rational, accurate models for understanding the often exotic behavior of such systems under various loadings; (2) systematically find their locally stable equilibria (corresponding to local minima of the total potential energy) as loading and/or composition parameters vary, particularly as small parameters like thickness, inter-facial capillarity, etc., asymptotically approach zero. Goal (2) is inextricably linked to (1). The investigator employs rational continuum models, characterized by general constitutive functions, to study questions of existence, thresholds of bifurcation and instability, and the structure of local energy minima. The work is highly interdisciplinary, requiring tools and perspectives from several areas of mathematics as well as biophysics and materials science. The investigator undertakes fundamental modeling and mathematical analysis enabling a quantitative, predictive characterization of the behavior of certain structures and solids under applied loading: lipid-bilayer membrane vesicles, thin films and the nucleation and progression of damage/fracture zones in solids. Each of these has direct and important connections to basic science and technology -- especially biotechnology and materials and manufacturing. For example, lipid-bilayer membranes are ubiquitous in bio-molecular systems; understanding and predicting their mechanical behavior is crucial for understanding cell function. The project focuses on understanding the behavior of man-made membranes or liposomes under changes in osmotic pressure, temperature, or composition. The future promise of liposome vesicles (closed membranes) as vehicles for drug delivery demands a fundamental understanding of their multi-phase mechanical behavior under loading and change of composition. Associated with this, but also of more general interest, is the wrinkling of thin films, which also shows up in the design of many thin devices or coatings, fabric-like structures, in the behavior of human skin, etc. The investigator studies the onset and development of wrinkles in very thin structures in highly stretched environments. Finally, the fracture of solids, a well-known culprit behind sudden and catastrophic failures in structures, is also currently of great interest for purposes of harvesting natural gas. Predictive models, which are especially lacking in this field, are addressed in this project. In particular, he studies the onset and development of damage leading to fracture of solids under loading.
Healey1312377首席研究员及其同事研究了薄结构和固体的非线性弹性问题,并应用于多相脂质双层囊泡,对高度拉伸的床单的皱纹以及固体的损伤/断裂。 工作的主要目标是:(1)提供一类合理,准确的模型,以理解各种负载下此类系统的外来行为; (2)系统地找到其局部稳定的平衡(对应于总势能的局部最小值)作为负载和/或组成参数变化,尤其是较小的参数,例如厚度,近年毛细血管等,渐近地接近零。 目标(2)与(1)密不可分。 研究人员采用以一般本构函数为特征的理性连续体模型来研究存在问题,分叉和不稳定性的阈值以及局部能量最小值的结构。 这项工作是高度跨学科的,需要数学几个领域以及生物物理学和材料科学的工具和观点。 研究者进行了基本的建模和数学分析,从而实现了在施加的负载下对某些结构和固体行为的定量,预测性表征:脂质双层膜囊泡,薄膜以及固体中损伤/裂缝区的成核和成核和进展。 这些中的每一个都与基础科学和技术有直接而重要的联系,尤其是生物技术以及材料和制造业。 例如,脂质双层膜在生物分子系统中无处不在。理解和预测其机械行为对于理解细胞功能至关重要。 该项目的重点是理解在渗透压,温度或成分变化下人造膜或脂质体的行为。 作为药物输送的车辆,脂质体囊泡(闭合膜)的未来希望需要对其在负载和组成变化下的多相机械行为的基本了解。 与此相关的是,薄膜的皱纹也与此相关的是,这也显示在许多薄设备或涂层的设计中,类似织物的结构,人类皮肤的行为等。在高度伸展的环境中,在非常薄的结构中的皱纹发作和发展。 最后,固体的裂缝是结构突然和灾难性失败背后众所周知的罪魁祸首,目前对于收集天然气而言也引起了极大的兴趣。 该项目在该领域尤其缺乏预测模型。 特别是,他研究了损害的发作和发展,导致固体在负载下的骨折。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Healey其他文献

Timothy Healey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Healey', 18)}}的其他基金

Modeling, Analysis, and Computation in Nonlinear Elasticity
非线性弹性建模、分析和计算
  • 批准号:
    2006586
  • 财政年份:
    2020
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Standard Grant
Nonlinear Problems for Highly Deformable Elastic Solids and Structures
高变形弹性固体和结构的非线性问题
  • 批准号:
    1613753
  • 财政年份:
    2016
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Standard Grant
Nonlinear Problems of Second-Gradient Elasticity for Multi-Phase Structures and Solids
多相结构和固体的二阶梯度弹性非线性问题
  • 批准号:
    1007830
  • 财政年份:
    2010
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Standard Grant
Multiphase Problems of Nonlinear Elasticity
非线性弹性的多相问题
  • 批准号:
    0707715
  • 财政年份:
    2007
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Standard Grant
Nonlinear Problems of Elasticity for Multiphase Solids and Shells
多相固体和壳的非线性弹性问题
  • 批准号:
    0406161
  • 财政年份:
    2004
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Continuing Grant
Bifurcation Analysis and Computation in Elliptic and Multiphase Problems of Nonlinear Elasticity
非线性弹性椭圆和多相问题的分岔分析与计算
  • 批准号:
    0072514
  • 财政年份:
    2000
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Continuing Grant
Global Continuation Methods in Nonlinear Elasticity
非线性弹性中的全局延拓方法
  • 批准号:
    9704730
  • 财政年份:
    1997
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Global Continuation Methods in Nonlinear Elasticity
数学科学:非线性弹性中的全局延拓方法
  • 批准号:
    9625830
  • 财政年份:
    1996
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Symmetry Methods and Nonlinear Analysis in Elastomechanics
数学科学:弹性力学中的对称方法和非线性分析
  • 批准号:
    9407738
  • 财政年份:
    1994
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Symmetry Methods and Nonlinear Analysis in Elastomechanics
数学科学:弹性力学中的对称方法和非线性分析
  • 批准号:
    9103254
  • 财政年份:
    1991
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于SPH方法的薄壳类结构物入水问题研究
  • 批准号:
    11972309
  • 批准年份:
    2019
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
三维薄管导热反问题的数值解法
  • 批准号:
    11226318
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
弹性薄壳中的有限元逼近问题研究
  • 批准号:
    11101330
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
双辊薄带连铸工艺中的两个关键问题研究
  • 批准号:
    51104096
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
薄结构问题的自适应有限元方法
  • 批准号:
    10601003
  • 批准年份:
    2006
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New problems in continuum mechanics: asymptotic eigenvalue distributions, rigorous numerical stability analysis and weakly nonlinear asymptotics in periodic thin film flow
连续介质力学的新问题:周期性薄膜流中的渐近特征值分布、严格的数值稳定性分析和弱非线性渐近
  • 批准号:
    1400555
  • 财政年份:
    2014
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Continuing Grant
CAREER: Thin shells - problems in nonlinear elasticity and fluid dynamics
职业:薄壳 - 非线性弹性和流体动力学问题
  • 批准号:
    1338869
  • 财政年份:
    2011
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Continuing Grant
CAREER: Thin shells - problems in nonlinear elasticity and fluid dynamics
职业:薄壳 - 非线性弹性和流体动力学问题
  • 批准号:
    0846996
  • 财政年份:
    2009
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Continuing Grant
Multiscale asymptotics for partial wrinkling of thin films in tension and related problems.
拉伸薄膜局部起皱的多尺度渐近及相关问题。
  • 批准号:
    EP/F035136/1
  • 财政年份:
    2009
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Research Grant
Free boundary problems described by vectorial order parameters
由向量阶参数描述的自由边界问题
  • 批准号:
    21740120
  • 财政年份:
    2009
  • 资助金额:
    $ 33.77万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了