US-Israel Research Proposal: Network Resonance: Revealing the Neuronal Mechanisms
美国-以色列研究提案:网络共振:揭示神经元机制
基本信息
- 批准号:1608077
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-level brain functions, such as motor and cognitive behavior, rely on the concerted activity of neurons in networks. Neuronal networks consist of a wide array of cells types, each having a distinct morphology and functionality. Neurons communicate among them through complex voltage signaling mechanisms called spikes, which may or may not exhibit regular behavior along time. Yet, from chaos rises structure: neuronal networks are able to exhibit periodic oscillations emerging from their collective spiking activity, and disruption of this activity may result in diseases of the nervous system. Prominent among these oscillations is the theta band (4-10 Hz) rhythm, which is believed to form a temporal framework for information processing and transmission. How these oscillations emerge is still an open question. Studies in reduced preparations show that the so-called principal cells exhibit a preference for theta-frequency subthreshold oscillatory activity (resonance) when they are forced with periodic inputs. This might suggest that the network theta oscillations are "inherited" from this resonance. However, we have recently found that in behaving animals, the resonance observed at the network level requires the interaction between single-neuron and circuit properties in ways that are more complex than previously thought. In this project, the investigators will study the mechanisms underlying network resonance using a two-pronged approach: The US team will carry out detailed computational modeling, and the Israel team will perform experiments with behaving mice. This research is expected to generate a framework for describing and understanding network resonance and to lay mechanistic foundations for understanding brain oscillations in general. Therefore, the results of this work are expected to have implications for cognitive and motor function in both health and disease. The central hypothesis of this project is that the resonant behavior of spiking neurons in the theta frequency band (4-10 Hz) can be generated locally in various areas of the brain, and crucially depends on the interplay of the intrinsic properties of the participating neurons and the network connectivity. The investigators will test this hypothesis in hippocampal areas CA1 and CA3 and in the neocortex, regions in which the theta rhythm is prominent. While resonance in single neurons has been studied for almost three decades, the effect of the subthreshold oscillatory properties of neurons on shaping the dynamics of oscillatory networks has only recently become the focus of increasing experimental and theoretical attention. One reason for the sub vs. suprathreshold gap in our understanding is the lack of a theoretical framework that could provide the basis for a systematic study, is described in terms of the biophysics of neuronal systems, and is grounded in experimental results. This research is aimed at filling this void. By combining biophysically constrained computational modeling and in vivo experiments using multi-site/multi-color optogenetic manipulations, the investigators will construct the various plausible scenarios linking the intrinsic oscillatory properties of neurons to circuits and test them experimentally. In this way, causal relations will be established by interrogating these neuronal circuits both theoretically and in practice. This will contribute to the understanding of the neuronal circuits that underlie the generation of rhythmic oscillations in the hippocampus and the neocortex, which have implications for cognition and motor behavior. In addition, this research will contribute to the development of a theory of resonance and to the understanding of the interplay of oscillatory networks. Furthermore, the innovative tools that will be used in this project will pave the way for the development of hybrid computational-in vivo experimental tools reminiscent of the use of the dynamic clamp in vitro. A companion project is being funded by the US-Israel Binational Science Foundation (BSF).
高水平的大脑功能(例如运动和认知行为)依赖于网络中神经元的一致活性。 神经元网络由多种细胞类型组成,每个细胞类型都具有独特的形态和功能。 神经元通过称为尖峰的复杂电压信号传导机制在其中进行交流,该机制可能会或可能不会随着时间的推移表现出规则行为。 然而,从混乱的上升结构中:神经元网络能够表现出从其集体尖峰活动中出现的周期性振荡,并且这种活动的破坏可能导致神经系统疾病。 这些振荡中突出的是theta频段(4-10 Hz)节奏,据信这是信息处理和传输的时间框架。 这些振荡如何出现仍然是一个悬而未决的问题。 减少制剂中的研究表明,所谓的主要细胞表现出对theta频率亚阈值振荡活性(共振)的偏爱,当时它们被迫定期输入。 这可能表明网络theta振荡是从这种共鸣中“继承”的。 但是,我们最近发现,在行为动物中,在网络水平上观察到的共振需要比以前想象的更复杂的单神经元和电路特性之间的相互作用。 在该项目中,研究人员将使用两管齐下的方法研究网络共振的基础机制:美国团队将进行详细的计算建模,以色列团队将对行为小鼠进行实验。 预计这项研究将产生一个描述和理解网络共振的框架,并为一般理解大脑振荡的基础。 因此,这项工作的结果有望对健康和疾病的认知和运动功能产生影响。该项目的中心假设是,可以在大脑的各个区域局部生成theta频带(4-10 Hz)中尖峰神经元的共振行为,并且至关重要地取决于参与神经元的内在特性的相互作用和网络连接性。 研究人员将在海马地区CA1和CA3和新皮层中检验这一假设。 尽管已经研究了将近三十年的单个神经元共振,但神经元的亚阈值振荡特性对塑造振荡网络动力学的影响直到最近才成为增加实验和理论关注的重点。 在我们理解的情况下,子与远方差距的原因之一是缺乏一个可以为系统研究提供基础的理论框架,它是根据神经元系统的生物物理学来描述的,并以实验结果为基础。 这项研究旨在填补这一空白。 通过使用多站点/多色光遗传学操纵结合生物物理约束的计算建模和体内实验,研究人员将构建与神经元的固有振荡特性相关的各种合理的场景,以进行循环并进行实验测试。 这样,将通过理论上和实践中审问这些神经元电路来建立因果关系。 这将有助于理解海马和新皮层中有节奏振荡的神经元回路,这对认知和运动行为具有影响。 此外,这项研究将有助于发展共鸣理论以及对振荡网络相互作用的理解。 此外,该项目将使用的创新工具将为开发混合计算中的体内实验工具铺平道路,让人联想到体外动态夹具的使用。 一个伴侣项目由美国 - 以色列双原则科学基金会(BSF)资助。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spiking resonances in models with the same slow resonant and fast amplifying currents but different subthreshold dynamic properties
具有相同慢速谐振和快速放大电流但亚阈值动态特性不同的模型中的尖峰谐振
- DOI:10.1007/s10827-017-0661-9
- 发表时间:2017
- 期刊:
- 影响因子:1.2
- 作者:Rotstein, Horacio G.
- 通讯作者:Rotstein, Horacio G.
Parameter Estimation in the Age of Degeneracy and Unidentifiability
- DOI:10.3390/math10020170
- 发表时间:2022-01-01
- 期刊:
- 影响因子:2.4
- 作者:Lederman,Dylan;Patel,Raghav;Rotstein,Horacio G.
- 通讯作者:Rotstein,Horacio G.
Network Resonance: Impedance Interactions via a Frequency Response Alternating Map (FRAM)
网络谐振:通过频率响应交替图 (FRAM) 进行阻抗交互
- DOI:10.1137/18m1200518
- 发表时间:2019
- 期刊:
- 影响因子:2.1
- 作者:Leiser, Randolph J.;Rotstein, Horacio G.
- 通讯作者:Rotstein, Horacio G.
Asymmetrical voltage response in resonant neurons shaped by nonlinearities
由非线性形成的共振神经元的不对称电压响应
- DOI:10.1063/1.5110033
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Pena, R. F. O.;Lima, V.;Shimoura, R. O.;Ceballos, C. C.;Rotstein, H. G.;Roque, A. C.
- 通讯作者:Roque, A. C.
Oscillations and variability in neuronal systems: interplay of autonomous transient dynamics and fast deterministic fluctuations
神经系统的振荡和变异:自主瞬态动力学和快速确定性波动的相互作用
- DOI:10.1007/s10827-022-00819-7
- 发表时间:2022
- 期刊:
- 影响因子:1.2
- 作者:Pena, Rodrigo F.;Rotstein, Horacio G.
- 通讯作者:Rotstein, Horacio G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Horacio Rotstein其他文献
Horacio Rotstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Horacio Rotstein', 18)}}的其他基金
Collaborative Research: Dynamic interactions of individual neurons in supporting hippocampal network oscillations during behavior
合作研究:行为过程中单个神经元的动态相互作用支持海马网络振荡
- 批准号:
2002863 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Workshop: Present and Future Theoretical Frameworks in Neuroscience
研讨会:神经科学当前和未来的理论框架
- 批准号:
1820631 - 财政年份:2018
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Mechanisms of frequency preference in neurons and networks: biophysics and dynamics
神经元和网络的频率偏好机制:生物物理学和动力学
- 批准号:
1313861 - 财政年份:2013
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Rhythmic oscillations in the entorhino-hippocampal system: biophysics and dynamics
内鼻海马系统的节律振荡:生物物理学和动力学
- 批准号:
0817241 - 财政年份:2008
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
相似国自然基金
黄麻纳米纤维素调控肠道菌群改善蜜蜂抗以色列急性麻痹病毒的机制研究
- 批准号:32300418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蜜蜂以色列急性麻痹病毒聚合酶及其蛋白引物VPg复合物的结构与功能研究
- 批准号:31802147
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
以色列急性麻痹病毒非结构蛋白特性及其感染机制研究
- 批准号:31572471
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
Bti毒性蛋白基因重组入球形芽孢杆菌BS-10染色体及其表达和改良菌株活性的研究
- 批准号:30901246
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CRCNS US-Israel Research Proposal: Multiscale analysis of brain-wide neuromodulation
CRCNS 美国-以色列研究提案:全脑神经调节的多尺度分析
- 批准号:
2207891 - 财政年份:2022
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
CRCNS: US-Israel - The egocentric-allocentric transformation of the cognitive map
CRCNS:美国-以色列 - 认知地图的自我中心-非中心转变
- 批准号:
10227807 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10461033 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10239260 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
CRCNS: US-Israel - The egocentric-allocentric transformation of the cognitive map
CRCNS:美国-以色列 - 认知地图的自我中心-非中心转变
- 批准号:
10657540 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别: