CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
基本信息
- 批准号:10239260
- 负责人:
- 金额:$ 27.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdolescenceAdolescentAdolescent DevelopmentAdolescent and Young AdultAdultAgeAnxietyAttention deficit hyperactivity disorderBackBehaviorBehavioralBrainCharacteristicsChildChildhoodClinicalCognitiveComputer ModelsDataDecision MakingDevelopmentDiagnosisDiagnosticDiffusion Magnetic Resonance ImagingDimensionsDiseaseEarly DiagnosisEarly InterventionEarly treatmentFunctional Magnetic Resonance ImagingGoalsIndividualIsraelJointsLearningLinkMapsMeasuresMental DepressionMental disordersModelingMotivationNeurocognitiveOutcomePathologyPatient Self-ReportPhenotypePopulationPrefrontal CortexPrevalenceProcessPrognosisPropertyPsychological reinforcementPsychopathologyResearchResearch ActivityResearch ProposalsRunningSamplingScanningStructureSymptomsTestingadaptive learningage relatedbaseclinical Diagnosisclinical predictorscognitive processcomputer frameworkcostfollow-upgeneralized anxietyimprovedindexingmultimodalitymultitaskneural circuitneural networkneuroimagingneuromechanismnovelpeerpreventrelating to nervous systemresponsesupport networksymptomatologyweb based interface
项目摘要
Adolescence is characterized by changes in decision-making, accompanied by the progressive development of the prefrontal cortex and reconfiguration of brain networks that support goal-directed decision-making. Adolescence is also the typical age of clinical onset and peak prevalence for many forms of mental illness. Recent advances in computational modeling of cognitive processes have enabled the quantification of parameters that govern learning and decision and characterization of how they differ in mental illnesses. There are several differentiating properties of learning and decision making processes in the brain: learning can be model-free (based on past trial and error) vs. model-based (learning the structure of a task and computing a best course of action given that structure), Pavlovian (with innate sensitivities to different motivationally relevant outcomes) vs. instrumental (arbitrarily adaptive), and learning occurs from positive and negative consequences. Furthermore, responses can be biased toward action or inaction, and can be more or less exploratory (variable). We will use three reinforcement-learning tasks that, together with computational models, index these multiple differentiable features of learning and decision making, in order to jointly define an individual “computational phenotype” of learning and decision processes. In Aim 1 this computational phenotype will be defined in a large online sample age 10-25 in order to map changes in symptom dimensions across adolescent development.
In Aim 2 we will use neuroimaging to characterize the relationship between decision-making phenotypes and neural connectivity in children, adolescents, and young adults. In Aim 3 we will characterize the relation between decision-making phenotypes and clinical symptomatology in a diagnostically heterogeneous sample of adolescents with generalized anxiety, depression, ADHD or OCD. Throughout, computational modeling of task behavior and self-reported symptom dimensions will build on state-of-the-art hierarchical modeling of multimodal and multi-task data. The research activities described in this proposal hold the potential to improve our understanding of the cognitive and neural mechanisms that underpin adolescent psychopathology, a question of broad societal impact given the prevalence and cost of mental illness, and the super-additive benefits of early detection and treatment.
青少年的特征是决策的变化,这是通过前额叶皮层的逐步发展和支持目标指导决策的大脑网络的重新配置而实现的。青少年也是许多形式的精神疾病的临床发作和峰值患病率的典型年龄。认知过程的计算模型的最新进展已使能够量化管理学习和决策的参数,并表征他们在心理方面的差异,大脑中学习和决策过程的学习和决策过程的差异很大:学习可以是模型的(基于过去的试验和错误)基于模型与模型的相关性(与该结构的最佳动作相关的效果(peveriantiant the Interration the Interration the Inderations the Inderations the Indrate the Indrate),而不同的是自在)与工具(任意自适应),学习是从积极和负面后果发生的。此外,回答我们将使用三个加强学习任务,这些任务与计算模型一起索引了学习和决策的这些多个可区分的特征,以共同定义学习和决策过程的单个“计算表型”。在AIM 1中,该计算表型将在大型的在线样本年龄10-25中定义,以绘制青少年发育中症状维度的变化。
在AIM 2中,我们将使用神经影像来表征儿童,青少年和年轻人的决策表型与神经元连通性之间的关系。在AIM 3中,我们将表征决策表型与临床症状学之间的关系,这些诊断为具有广义动画,抑郁症,ADHD或OCD的青少年样本。在整个过程中,任务行为和自我报告的症状维度的计算建模将基于多模式和多任务数据的最新分层建模。该提案中描述的研究活动有可能提高我们对基于青少年心理病理学的认知和神经元机制的理解,鉴于精神疾病的患病率和成本以及早期发现和治疗的超级增长益处,这是一个广泛的社会影响问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yael Niv其他文献
Yael Niv的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yael Niv', 18)}}的其他基金
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10461033 - 财政年份:2020
- 资助金额:
$ 27.7万 - 项目类别:
Decoding the dynamic representation of reward predictions across mesocorticostriatal circuits during learning
解码学习过程中中皮质纹状体回路奖励预测的动态表示
- 批准号:
10395963 - 财政年份:2020
- 资助金额:
$ 27.7万 - 项目类别:
Decoding the dynamic representation of reward predictions across mesocorticostriatal circuits during learning
解码学习过程中中皮质纹状体回路奖励预测的动态表示
- 批准号:
10153745 - 财政年份:2020
- 资助金额:
$ 27.7万 - 项目类别:
CRCNS US-Israel Research Proposal: Computational Phenotyping of Decision Making in Adolescent Psychopathology
CRCNS 美国-以色列研究提案:青少年精神病理学决策的计算表型
- 批准号:
10663070 - 财政年份:2020
- 资助金额:
$ 27.7万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10656297 - 财政年份:2019
- 资助金额:
$ 27.7万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10449368 - 财政年份:2019
- 资助金额:
$ 27.7万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10219795 - 财政年份:2019
- 资助金额:
$ 27.7万 - 项目类别:
A Computational Psychiatry Investigation of the effects of Mood on Reward Learning and Attention
情绪对奖励学习和注意力影响的计算精神病学研究
- 批准号:
10002301 - 财政年份:2019
- 资助金额:
$ 27.7万 - 项目类别:
Orbitofrontal cortex as a cognitive map of task states
眶额皮层作为任务状态的认知图
- 批准号:
9353368 - 财政年份:2016
- 资助金额:
$ 27.7万 - 项目类别:
Orbitofrontal cortex as a cognitive map of task states
眶额皮层作为任务状态的认知图
- 批准号:
9159875 - 财政年份:2016
- 资助金额:
$ 27.7万 - 项目类别:
相似国自然基金
青春期发育对青少年心理行为发展的影响及生理机制
- 批准号:32300888
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
儿童青少年睡眠与昼夜节律紊乱对特发性脊柱侧凸发生发展的影响
- 批准号:82302783
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人际压力影响青少年抑郁发展的心理与神经机制:基于自我意识的视角
- 批准号:32371118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
亲子互动多维同步性对青少年感恩品德发展的影响:人际与个体内部机制
- 批准号:32300912
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
青少年游戏成瘾的发展与脑神经机制研究
- 批准号:32300887
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 27.7万 - 项目类别:
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
- 批准号:
10751263 - 财政年份:2024
- 资助金额:
$ 27.7万 - 项目类别:
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 27.7万 - 项目类别:
Brain Mechanisms Underlying Changes in Neural Oscillations through Adolescent Cognitive Maturation
青少年认知成熟导致神经振荡变化的大脑机制
- 批准号:
10675169 - 财政年份:2023
- 资助金额:
$ 27.7万 - 项目类别: