EAGER: Biomanufacturing: Engineered hydrogel capsules for controlled scalable cultures of pluripotent stem cells
EAGER:生物制造:用于多能干细胞可控可扩展培养的工程水凝胶胶囊
基本信息
- 批准号:1547618
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Banerjee, Ipsita Proposal Number: 1547618Human pluripotent stem cells (hPSCs) possess the unique capability of giving rise to many different cell types in the body and hence hold great potential in transforming cell-based therapies, disease modeling, and drug discovery. A vital step in the path to clinical translation of hPSCs is to implement reproducible, homogenous, and scalable cell culture and differentiation technologies. The primary challenge in scalable cultures of hPSCs is the maintenance of high viability and proliferation without compromising the ability of the cells to differentiate into therapeutically relevant tissue types. The objective of this research is to design a novel materials-based platform to achieve such scalable culture of hPSCs for biomanufacturing. Besides scale-up, the designed system is expected to produce homogenous aggregates of uniform size, which will significantly reduce variability in differentiation and lead to increased fidelity in biomanufacturing. Currently, the ubiquitous scale-up platform of hPSCs is based on aggregate suspension cultures which have the potential to produce hPSCs at clinically relevant scales. Substantial challenges still remain with this system, including low viability of initial seeding population, spontaneous cell aggregation leading to inhomogeneous and non-uniform aggregates, and uncontrolled and dynamic shear force on the cell surface. These challenges can restrict scalability and introduce unwanted and unnecessary variability on differentiation. In this work, the investigators propose to overcome these shortcomings through the design of novel biomimetic hydrogel capsules for scalable culture of hPSCs. Specifically, they propose to incorporate synthetic bioactive peptides mimicking cadherin and non-cadherin cell-cell interactions within three dimensional (3D) macroporous hydrogel capsules, for encapsulating and propagating hPSCs. These peptide-conjugated hydrogel capsules will be designed to mimic the cellular microenvironment by synthetically recreating cell-cell contacts through epithelial-cadherin (E-cadherin). Alternate peptide designs and combinations will be screened in an alginate array platform to select for those supporting short-term viability and proliferation. Further, macroporous capsules will be synthesized from the designed peptide-conjugated alginate to facilitate homogeneity in hPSC aggregates. The capsule design will also prevent coalescence of the aggregates. hPSCs propagated in alternate capsule designs will be characterized for long-term viability, pluripotency and scalability. Recreating cell-cell contact is expected to significantly enhance single cell viability and clonal expansion over current state-of-art of inhibiting Rho associated coiled coil protein kinase (ROCK) pathway. Furthermore, hydrogel encapsulation will protect the cells from bioreactor hydrodynamic stresses, hence removing shear-induced variations in the culture. The proposed work encompasses biomaterials, synthetic peptides, stem cells and bioprocessing, hence providing opportunities for interdisciplinary training of students from different disciplines. The PI also proposes to utilize health care relevance of this cross-disciplinary project to involve under-represented and minority students into STEM fields.
PI:Banerjee,Ipsita 提案编号:1547618 人类多能干细胞 (hPSC) 具有在体内产生多种不同细胞类型的独特能力,因此在改变基于细胞的疗法、疾病建模和药物发现方面具有巨大潜力。 hPSC 临床转化道路上的一个重要步骤是实施可重复、同质且可扩展的细胞培养和分化技术。 hPSC 可扩展培养的主要挑战是维持高活力和增殖而不损害细胞分化为治疗相关组织类型的能力。本研究的目的是设计一个基于材料的新型平台,以实现用于生物制造的 hPSC 的可扩展培养。除了扩大规模外,所设计的系统预计还能产生尺寸均匀的同质聚集体,这将显着减少分化的变异性,并提高生物制造的保真度。目前,普遍存在的 hPSC 放大平台基于聚合悬浮培养物,有潜力生产临床相关规模的 hPSC。 该系统仍然存在重大挑战,包括初始接种群体的活力低、自发细胞聚集导致不均匀和不均匀的聚集体,以及细胞表面不受控制的动态剪切力。 这些挑战可能会限制可扩展性,并在差异化方面引入不必要的和不必要的变化。 在这项工作中,研究人员建议通过设计用于可扩展培养 hPSC 的新型仿生水凝胶胶囊来克服这些缺点。具体来说,他们建议将模拟钙粘蛋白和非钙粘蛋白细胞间相互作用的合成生物活性肽纳入三维(3D)大孔水凝胶胶囊中,用于封装和增殖 hPSC。这些肽缀合水凝胶胶囊将被设计为通过上皮钙粘蛋白(E-钙粘蛋白)综合重建细胞与细胞接触来模拟细胞微环境。将在藻酸盐阵列平台中筛选替代肽设计和组合,以选择那些支持短期活力和增殖的肽。此外,大孔胶囊将从设计的肽缀合藻酸盐合成,以促进 hPSC 聚集体的均质性。胶囊设计还将防止聚集体聚结。在替代胶囊设计中增殖的 hPSC 将具有长期活力、多能性和可扩展性的特征。与目前抑制 Rho 相关卷曲螺旋蛋白激酶 (ROCK) 通路的最先进技术相比,重建细胞间接触有望显着增强单细胞活力和克隆扩增。此外,水凝胶封装将保护细胞免受生物反应器水动力应力的影响,从而消除培养物中剪切引起的变化。拟议的工作涵盖生物材料、合成肽、干细胞和生物加工,从而为来自不同学科的学生提供跨学科培训的机会。 PI 还建议利用这个跨学科项目的医疗保健相关性,让代表性不足的少数族裔学生参与 STEM 领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ipsita Banerjee其他文献
The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review.
2 型糖尿病的根本原因、肠道微生物群的治疗选择和饮食习惯:叙述性回顾。
- DOI:
10.1515/jbcpp-2024-0043 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:0
- 作者:
Krishnendu Adhikary;Riya Sarkar;Sriparna Maity;Ipsita Banerjee;Prity Chatterjee;Koushik Bhattacharya - 通讯作者:
Koushik Bhattacharya
Highly aligned ribbon-shaped Pd nanoparticle assemblies by spontaneous organization
通过自发组织高度排列的带状钯纳米粒子组装体
- DOI:
10.1021/jp0706937 - 发表时间:
2007-05-10 - 期刊:
- 影响因子:3.7
- 作者:
O. Taratula;Alex M. Chen;Jianming Zhang;J. Chaudry;L. Nagahara;Ipsita Banerjee;Huixin He - 通讯作者:
Huixin He
DIGITAL TECHNOLOGY AND HEALTH ADVOCACY ON COVID-19: A CASE STUDY OF TWITTER HANDLES OF THE WORLD HEALTH ORGANIZATION AND MINISTRY OF HEALTH OF INDIA
关于 COVID-19 的数字技术和健康宣传:世界卫生组织和印度卫生部的 Twitter 手柄案例研究
- DOI:
10.47305/jlia2137191d - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Rajesh Das;Ipsita Banerjee - 通讯作者:
Ipsita Banerjee
Parametric process synthesis for general nonlinear models
一般非线性模型的参数过程综合
- DOI:
10.1016/s0098-1354(03)00096-6 - 发表时间:
2003-10-15 - 期刊:
- 影响因子:0
- 作者:
Ipsita Banerjee;M. Ierapetritou - 通讯作者:
M. Ierapetritou
Alginate encapsulation of chitosan nanoparticles: a viable alternative to soluble chemical signaling in definitive endoderm induction of human embryonic stem cells
- DOI:
10.1039/c5tb02428e - 发表时间:
2016-03 - 期刊:
- 影响因子:7
- 作者:
Joseph Candiello;Thomas Richardson;Kimaya Padgaonkar;Keith Task;Prashant N. Kumta;Ipsita Banerjee - 通讯作者:
Ipsita Banerjee
Ipsita Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ipsita Banerjee', 18)}}的其他基金
FMSG:BIO: Integrating Artificial Intelligence with Bioprinting for Future Manufacturing of Organoids
FMSG:BIO:将人工智能与生物打印相结合,用于未来类器官的制造
- 批准号:
2229156 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FMSG:BIO: Integrating Artificial Intelligence with Bioprinting for Future Manufacturing of Organoids
FMSG:BIO:将人工智能与生物打印相结合,用于未来类器官的制造
- 批准号:
2229156 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MRI: Acquisition of Fluorescence Activated Cell Sorter (FACS) for Multidisciplinary Research and Education at Fordham University
MRI:福特汉姆大学采购荧光激活细胞分选仪 (FACS) 用于多学科研究和教育
- 批准号:
2117625 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Bioengineering thymus organoids towards generation of humanized mice models
合作研究:通过生物工程胸腺类器官来生成人源化小鼠模型
- 批准号:
1803781 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Engineer a functional 3D vascularized islet organoid from pluripotent stem cells
合作研究:利用多能干细胞设计功能性 3D 血管化胰岛类器官
- 批准号:
1706674 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MRI: Acquisition of a High Resolution Atomic Force Microscope for Interdisciplinary Nanoscience Research and Education at Fordham University
MRI:福特汉姆大学购买高分辨率原子力显微镜用于跨学科纳米科学研究和教育
- 批准号:
1626378 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Systems Analysis of Signaling Pathway towards Robust Differentiation
EAGER:实现稳健分化的信号通路系统分析
- 批准号:
1455800 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
防/除海洋生物粘附高耐久涂层的仿生设计和制造研究
- 批准号:52375296
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
人工关节超滑运动界面和生物固定界面设计、制造及行为机理研究
- 批准号:52335004
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
增材制造锌镁合金复合椎间融合器降解调控机制与生物学效应研究
- 批准号:52301302
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
新型抗菌可控释放Fe-Cu合金的激光生物制造及其体外生物学性能研究
- 批准号:52305313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新一代重要有机酸反式乌头酸的先进生物制造技术
- 批准号:22338012
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
相似海外基金
A Convergent Bioengineered Platform for Multifunctional Therapeutic Exosomes
多功能治疗性外泌体的融合生物工程平台
- 批准号:
10713513 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Harmony AI: Natural Language Processing Enabling Advanced Biomanufacturing
Harmony AI:自然语言处理实现先进生物制造
- 批准号:
10761082 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Next Generation Autologous TIL Cancer Therapy: Development of GMP manufacturing process
下一代自体 TIL 癌症疗法:GMP 制造工艺的开发
- 批准号:
10472171 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Next Generation Autologous TIL Cancer Therapy: Development of GMP manufacturing process
下一代自体 TIL 癌症疗法:GMP 制造工艺的开发
- 批准号:
10472171 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别: