EAGER: Systems Analysis of Signaling Pathway towards Robust Differentiation

EAGER:实现稳健分化的信号通路系统分析

基本信息

  • 批准号:
    1455800
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2016-02-29
  • 项目状态:
    已结题

项目摘要

1455800 Banerjee, Ipsita Pluripotent stem cells have the unique capability of giving rise to any tissue-specific cell type at an unlimited quantity. These outstanding properties make them a promising candidate as a renewable source of human tissue for research, pharmaceutical testing and cell-based therapies. The feasibility of obtaining organ-specific cell types by modulation of associated signaling pathways has already been demonstrated. However, the differentiated cell types at present remain limited in their yield and mature functionality. The next challenge in realizing the potential of stem cells is to ensure functional and homogenous maturation of these cells to the desired lineage. This goal can be achieved through a quantitative understanding of signal transduction and noise propagation through the signaling pathway. The topic of this EAGER proposal is to develop a quantitative and predictive representation of a critical signal transduction pathway driving stem cell differentiation. Once it is known how signals are transduced and how uncertainty is propagated during differentiation, it will be possible to design targeted interventions to achieve homogenous and efficient differentiation. The predictive platform to be developed in this project will inform the design of targeted interventions for efficient and homogenous differentiation of stem cells.In this proposal, the Transforming Growth Factor beta (TGF beta) signaling pathway will be analyzed for differentiating pluripotent stem cells by integrating quantitative experiments with predictive modeling and systems analysis. The TGF beta pathway plays a central role in inducing definitive endoderm differentiation in human pluripotent stem cell. Key components of the experimental platform will be the development of techniques for quantitative single cell level analysis of stem cell dynamics, in order to ensure accurate representation of a cell¡¦s dynamic response, unbiased by heterogeneity in the population. Specifically, the dynamics of TGF beta effectors molecules will be quantified in individual cell compartment using Green Fluorescent Protein fused effector proteins. The nucleo-cytoplasmic shuttling of these proteins will be quantified using Fluorescence Recovery after Photobleaching (FRAP) assay. Experimentally obtained single cell dynamics will be used to train the mathematical model of the pathway. Ensemble modeling will be used to integrate the single cell information to represent heterogeneity in cell population. Computational efficiency of this integration will be enhanced by a meta-modeling technique. Global sensitivity analysis of the ensemble model will allow identification of key mechanisms governing signal transduction. The model predictions will be experimentally validated at every step of the model development. The validated model will be further analyzed for propagation of uncertainty through the system by (i) experimental measurement of input variability and (ii) in-silico simulation of propagation of input variability to output molecules. The final outcome of the proposed project will be an experimentally validated predictive platform which will allow design of targeted perturbations to enhance differentiation efficiency while reducing heterogeneity in the differentiated population.
1455800 Banerjee, Ipsita 多能干细胞具有无限数量产生任何组织特异性细胞类型的独特能力,这些出色的特性使它们成为组织研究、药物测试和细胞基础的人类可再生来源的有前途的候选者。通过调节相关信号通路获得器官特异性细胞类型的可行性已经得到证实,然而,目前分化的细胞类型在产量和成熟功能方面仍然有限,这是实现干细胞潜力的下一个挑战。是为了确保这些细胞的功能和同质成熟到所需的谱系,这个目标可以通过对信号转导和噪声传播的信号通路的定量理解来实现。一旦了解信号如何转导以及分化过程中不确定性如何传播,就可以设计有针对性的干预措施以实现同质且高效的分化。将告知设计在该提案中,将通过定量整合实验与预测模型和系统分析来分析转化生长因子β(TGFβ)信号通路在分化多能干细胞中的核心作用。在诱导人类多能干细胞定形内胚层分化方面,实验平台的关键组成部分将是干细胞动力学的单细胞水平分析技术的开发,以确保细胞的准确表达。具体而言,将使用绿色荧光蛋白融合效应蛋白在单个细胞区室中量化 TGF β 效应分子的动态。将使用荧光恢复来量化这些蛋白质的核-细胞质穿梭。光漂白(FRAP)测定后,将使用实验获得的单细胞动力学来训练该通路的数学模型,该模型将用于整合单细胞信息。通过元建模技术来表示细胞群的异质性,将能够识别控制信号转导的关键机制。模型预测将在每个步骤中得到实验验证。模型开发将通过(i)输入变异性的实验测量和(ii)输入变异性到输出分子的计算机模拟来进一步分析不确定性在系统中的传播。项目将是一个经过实验验证的预测平台,将允许设计有针对性的扰动,以提高分化效率,同时减少分化群体的异质性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ipsita Banerjee其他文献

The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review.
2 型糖尿病的根本原因、肠道微生物群的治疗选择和饮食习惯:叙述性回顾。
Highly aligned ribbon-shaped Pd nanoparticle assemblies by spontaneous organization
通过自发组织高度排列的带状钯纳米粒子组装体
  • DOI:
    10.1021/jp0706937
  • 发表时间:
    2007-05-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    O. Taratula;Alex M. Chen;Jianming Zhang;J. Chaudry;L. Nagahara;Ipsita Banerjee;Huixin He
  • 通讯作者:
    Huixin He
DIGITAL TECHNOLOGY AND HEALTH ADVOCACY ON COVID-19: A CASE STUDY OF TWITTER HANDLES OF THE WORLD HEALTH ORGANIZATION AND MINISTRY OF HEALTH OF INDIA
关于 COVID-19 的数字技术和健康宣传:世界卫生组织和印度卫生部的 Twitter 手柄案例研究
Parametric process synthesis for general nonlinear models
一般非线性模型的参数过程综合
  • DOI:
    10.1016/s0098-1354(03)00096-6
  • 发表时间:
    2003-10-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ipsita Banerjee;M. Ierapetritou
  • 通讯作者:
    M. Ierapetritou
Alginate encapsulation of chitosan nanoparticles: a viable alternative to soluble chemical signaling in definitive endoderm induction of human embryonic stem cells
  • DOI:
    10.1039/c5tb02428e
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Joseph Candiello;Thomas Richardson;Kimaya Padgaonkar;Keith Task;Prashant N. Kumta;Ipsita Banerjee
  • 通讯作者:
    Ipsita Banerjee

Ipsita Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ipsita Banerjee', 18)}}的其他基金

FMSG:BIO: Integrating Artificial Intelligence with Bioprinting for Future Manufacturing of Organoids
FMSG:BIO:将人工智能与生物打印相结合,用于未来类器官的制造
  • 批准号:
    2229156
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
FMSG:BIO: Integrating Artificial Intelligence with Bioprinting for Future Manufacturing of Organoids
FMSG:BIO:将人工智能与生物打印相结合,用于未来类器官的制造
  • 批准号:
    2229156
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Fluorescence Activated Cell Sorter (FACS) for Multidisciplinary Research and Education at Fordham University
MRI:福特汉姆大学采购荧光激活细胞分选仪 (FACS) 用于多学科研究和教育
  • 批准号:
    2117625
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Bioengineering thymus organoids towards generation of humanized mice models
合作研究:通过生物工程胸腺类器官来生成人源化小鼠模型
  • 批准号:
    1803781
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineer a functional 3D vascularized islet organoid from pluripotent stem cells
合作研究:利用多能干细胞设计功能性 3D 血管化胰岛类器官
  • 批准号:
    1706674
  • 财政年份:
    2017
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High Resolution Atomic Force Microscope for Interdisciplinary Nanoscience Research and Education at Fordham University
MRI:福特汉姆大学购买高分辨率原子力显微镜用于跨学科纳米科学研究和教育
  • 批准号:
    1626378
  • 财政年份:
    2016
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Biomanufacturing: Engineered hydrogel capsules for controlled scalable cultures of pluripotent stem cells
EAGER:生物制造:用于多能干细胞可控可扩展培养的工程水凝胶胶囊
  • 批准号:
    1547618
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

心脏再生复杂动态系统的空间单细胞组学分析算法研究
  • 批准号:
    62372209
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
有限环上多智能体系统分布式协同控制的分析与研究
  • 批准号:
    12301573
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
S100A9作为万古霉素儿童中枢神经系统抗感染个体化治疗预测因子的机制研究和量效分析
  • 批准号:
    82304631
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
状态/输出约束下高阶非线性系统的有限时间控制设计与分析
  • 批准号:
    62303263
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于结构方法的复杂网络系统能控性分析与优化
  • 批准号:
    62303195
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
  • 批准号:
    2301411
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CAREER: Multi-Timescale Dynamics Modeling, Simulation, and Analysis of Converter-Dominated Power Systems
职业:以转换器为主导的电力系统的多时间尺度动态建模、仿真和分析
  • 批准号:
    2339148
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Long COVID in Bangladesh: Developing Strategies for Identifying and Managing Post-COVID Syndrome in LMIC and Low Resource Health Systems
孟加拉国的长期新冠疫情:制定识别和管理中低收入国家和资源匮乏卫生系统中新冠肺炎后综合症的策略
  • 批准号:
    494270
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了