FMSG:BIO: Integrating Artificial Intelligence with Bioprinting for Future Manufacturing of Organoids
FMSG:BIO:将人工智能与生物打印相结合,用于未来类器官的制造
基本信息
- 批准号:2229156
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Human pluripotent stem cell (hPSC) derived organoids are highly valuable for disease treatment and therapeutic development. Translating organoids to practical use will require scalable and reproducible methods to produce high-quality organoids. This project will devise strategies exploiting three-dimensional (3D) bioprinting for scalable organoid manufacturing. Machine Learning (ML)/Artificial Intelligence (AI) techniques will be developed to rapidly assess organoid quality from microscopy images. The goal is to offer a pathway for large-scale manufacturing of tailored and patient-specific organoids by augmenting ML/AI techniques for 3D bioprinting. The research will provide trainees with multidisciplinary skill sets, encompassing bioprinting, organoid engineering, imaging, and AI methods. In addition, the project will integrate global and social outreach aspects into engineering curriculum, offering a holistic educational pathway to train the future, globally aware U.S. biomanufacturing workforce to lead the world in revolutionary manufacturing concepts.This proof-of-concept Future Manufacturing Seed Grant (FMSG) project aims to integrate beneficial mechano-signaling pathways for organoid manufacturing via ML/AI aided 3D bioprinting. In executing this approach, the goal is to develop non-invasive assays to measure organoid phenotype to meet the critical quality attributes of the manufacturing pipeline. The central hypothesis is that imposing cell confinement via encapsulation will induce favorable mechano-transduction pathways, which will enhance organoid differentiation by deactivating actin filaments. The resulting cytoskeletal modification from actin remodeling can be exploited to extract information about cell characteristics to predict phenotype. This hypothesis will be tested by developing techniques for (i) cell-confinement driven organoid derivation using 3D bioprinting; and (ii) predicting cell fate from cytoskeletal modifications using Artificial Intelligence (AI) models to identify features of organoid development in bright-field images. This FMSG project demonstrate the feasibility of integrating AI with 3D bioprinting in the organoid generation pipeline, with the long-term goal of enabling scalable manufacturing of organoids with stringent in-line quality control.This project is jointly funded by the Division of Chemical, Bioengineering, Environmental, and Transport Systems and the Division of Engineering Education and Centers in the Directorate for Engineering and the Division of Molecular and Cellular Biosciences in the Directorate for Biological Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类多能干细胞 (hPSC) 衍生的类器官对于疾病治疗和治疗开发非常有价值。将类器官转化为实际应用需要可扩展且可重复的方法来生产高质量的类器官。该项目将制定利用三维(3D)生物打印进行可扩展类器官制造的策略。将开发机器学习(ML)/人工智能(AI)技术来快速评估显微镜图像中的类器官质量。目标是通过增强 3D 生物打印的 ML/AI 技术,为大规模生产定制的、针对患者的类器官提供一条途径。该研究将为学员提供多学科技能,包括生物打印、类器官工程、成像和人工智能方法。此外,该项目还将把全球和社会外展方面纳入工程课程,提供全面的教育途径来培训未来、具有全球意识的美国生物制造劳动力,以革命性的制造概念引领世界。这项概念验证的未来制造种子补助金(FMSG) 项目旨在通过 ML/AI 辅助 3D 生物打印整合有益的机械信号通路,用于类器官制造。在执行这种方法时,目标是开发非侵入性测定法来测量类器官表型,以满足生产流程的关键质量属性。中心假设是,通过封装施加细胞限制将诱导有利的机械传导途径,这将通过使肌动蛋白丝失活来增强类器官的分化。肌动蛋白重塑产生的细胞骨架修饰可用于提取有关细胞特征的信息以预测表型。这一假设将通过开发以下技术来检验:(i) 使用 3D 生物打印进行细胞限制驱动的类器官衍生; (ii) 使用人工智能 (AI) 模型通过细胞骨架修饰预测细胞命运,以识别明场图像中类器官发育的特征。该 FMSG 项目展示了在类器官生成管道中将人工智能与 3D 生物打印相结合的可行性,其长期目标是通过严格的在线质量控制实现类器官的可扩展制造。该项目由化学与生物工程部门共同资助、环境和运输系统以及工程教育部和工程理事会中心以及生物科学理事会分子和细胞生物科学部。该奖项反映了 NSF 的法定使命,并已通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ipsita Banerjee其他文献
The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review.
2 型糖尿病的根本原因、肠道微生物群的治疗选择和饮食习惯:叙述性回顾。
- DOI:
10.1515/jbcpp-2024-0043 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:0
- 作者:
Krishnendu Adhikary;Riya Sarkar;Sriparna Maity;Ipsita Banerjee;Prity Chatterjee;Koushik Bhattacharya - 通讯作者:
Koushik Bhattacharya
Highly aligned ribbon-shaped Pd nanoparticle assemblies by spontaneous organization
通过自发组织高度排列的带状钯纳米粒子组装体
- DOI:
10.1021/jp0706937 - 发表时间:
2007-05-10 - 期刊:
- 影响因子:3.7
- 作者:
O. Taratula;Alex M. Chen;Jianming Zhang;J. Chaudry;L. Nagahara;Ipsita Banerjee;Huixin He - 通讯作者:
Huixin He
DIGITAL TECHNOLOGY AND HEALTH ADVOCACY ON COVID-19: A CASE STUDY OF TWITTER HANDLES OF THE WORLD HEALTH ORGANIZATION AND MINISTRY OF HEALTH OF INDIA
关于 COVID-19 的数字技术和健康宣传:世界卫生组织和印度卫生部的 Twitter 手柄案例研究
- DOI:
10.47305/jlia2137191d - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Rajesh Das;Ipsita Banerjee - 通讯作者:
Ipsita Banerjee
Solution Structure of the dATP-Inactivated Class I Ribonucleotide Reductase From Leeuwenhoekiella blandensis by SAXS and Cryo-Electron Microscopy
通过 SAXS 和冷冻电子显微镜研究布兰登列文霍基菌 (Leeuwenhoekiella blandensis) dATP 失活的 I 类核糖核苷酸还原酶的溶液结构
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:5
- 作者:
M. Hasan;Ipsita Banerjee;Inna Rozman Grinberg;B. Sjöberg;D. Logan - 通讯作者:
D. Logan
Nucleotide binding to the ATP-cone in anaerobic ribonucleotide reductases allosterically regulates activity by modulating substrate binding
厌氧核糖核苷酸还原酶中与 ATP 锥体结合的核苷酸通过调节底物结合来变构调节活性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:7.7
- 作者:
O. Bimai;Ipsita Banerjee;Inna Rozman Grinberg;Ping Huang;Lucas Hultgren;Simon Ekström;Daniel Lundin;B. Sjöberg;Derek T Logan - 通讯作者:
Derek T Logan
Ipsita Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ipsita Banerjee', 18)}}的其他基金
MRI: Acquisition of Fluorescence Activated Cell Sorter (FACS) for Multidisciplinary Research and Education at Fordham University
MRI:福特汉姆大学采购荧光激活细胞分选仪 (FACS) 用于多学科研究和教育
- 批准号:
2117625 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Bioengineering thymus organoids towards generation of humanized mice models
合作研究:通过生物工程胸腺类器官来生成人源化小鼠模型
- 批准号:
1803781 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Engineer a functional 3D vascularized islet organoid from pluripotent stem cells
合作研究:利用多能干细胞设计功能性 3D 血管化胰岛类器官
- 批准号:
1706674 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
MRI: Acquisition of a High Resolution Atomic Force Microscope for Interdisciplinary Nanoscience Research and Education at Fordham University
MRI:福特汉姆大学购买高分辨率原子力显微镜用于跨学科纳米科学研究和教育
- 批准号:
1626378 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: Biomanufacturing: Engineered hydrogel capsules for controlled scalable cultures of pluripotent stem cells
EAGER:生物制造:用于多能干细胞可控可扩展培养的工程水凝胶胶囊
- 批准号:
1547618 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
EAGER: Systems Analysis of Signaling Pathway towards Robust Differentiation
EAGER:实现稳健分化的信号通路系统分析
- 批准号:
1455800 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
以正构/变构协同作用探索吴茱萸生物碱抗肺纤维化的物质基础及“构效-构靶-构型”整合机制研究
- 批准号:82374155
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
MUC15通过整合素调控胰腺癌细胞迁移和侵袭的力学生物学机制
- 批准号:12372316
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于多组学整合分析揭示铅暴露的生物标志物与肝脏损伤的分子机制
- 批准号:22306194
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
国槐天然产物芦丁生物合成调控网络的多组学整合研究
- 批准号:32371900
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Establishing low C/N emission paddy management and screening high-yield rice by integrating molecular biology and soil physics
结合分子生物学和土壤物理学建立低C/N排放水稻管理并筛选高产水稻
- 批准号:
22K19230 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2204657 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2204656 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2204656 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant