EAGER: A Quantitative Theory for Technology Evolution and Innovation
EAGER:技术进化与创新的定量理论
基本信息
- 批准号:1550002
- 负责人:
- 金额:$ 14.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technology innovation is critical to the social welfare, health, economy, and security of the USA and the world. A fundamental understating of innovation is elusive. It can be observed, but it is hard to predict, and even harder to execute. The difficulty in understanding and executing innovation rests in part on the complexity of the technology ecosystem. For example, the invention and development of Corning's Gorilla Glass supports the smartphone which in turn synergizes with social media to drive new types of software development. At the same time, observation of a single technology through time shows an evolutionary improvement in performance. Compared to the first generation, current smartphones store more photographs and operate longer without the need for charging. This EArly-Concept Grant for Exploratory Research (EAGER) award supports fundamental research to create a mathematical theory that describes technology performance evolution and, simultaneously, ecological synergies between technologies. The created theoretical model will have sufficient fidelity and causal indicators such that one can predict and effect innovation. This new theory will inform individual and enterprise-scale technology innovation. Also, by knowing the impact and by predicting the evolution of new technologies, policy makers can make sound investment and funding decisions for key research initiatives. The enhanced understanding will also help public policy officials develop appropriate regulations and incentive structures for future technology development. The technology ecosystem model of technologies and their interaction is modeled using generalized Lotka-Volterra (L-V) population models. The intellectual impact of this work includes the extensions made to the general format of L-V equations to connect them to microscale technology performance improvement (the improved performance of a single technology). The microscale technology evolution model will follow S-curve trends, but in fact be created with L-V equations. This general model of technology evolution will be extended using theories from The Theory of Inventive Problem Solving (TIPS). The hypothesis is that this multiscale, hierarchical, L-V model will be able to capture the ecosystem type interaction of engineered products and technologies as well as performance evolution.
技术创新对于美国和世界的社会福利、健康、经济和安全至关重要。对创新的基本理解是难以捉摸的。它可以被观察到,但很难预测,更难执行。理解和执行创新的困难部分取决于技术生态系统的复杂性。例如,康宁大猩猩玻璃的发明和开发支持了智能手机,而智能手机又与社交媒体协同作用,推动新型软件的开发。与此同时,随着时间的推移对单一技术的观察显示出性能的进化改进。与第一代相比,当前的智能手机可以存储更多照片,并且无需充电即可运行更长时间。这项探索性研究早期概念资助 (EAGER) 奖项支持基础研究,以创建描述技术性能演变以及同时技术之间的生态协同作用的数学理论。创建的理论模型将具有足够的保真度和因果指标,以便人们能够预测和影响创新。这一新理论将为个人和企业规模的技术创新提供信息。此外,通过了解影响并预测新技术的演变,政策制定者可以为关键研究计划做出合理的投资和资助决策。加深的理解还将帮助公共政策官员为未来的技术发展制定适当的法规和激励结构。 技术及其相互作用的技术生态系统模型使用广义 Lotka-Volterra (L-V) 群体模型进行建模。这项工作的智力影响包括对 L-V 方程一般格式的扩展,以将它们与微尺度技术性能改进(单一技术的性能改进)联系起来。微观技术演化模型将遵循S曲线趋势,但实际上是用L-V方程创建的。这种技术进化的一般模型将使用创造性问题解决理论(TIPS)中的理论进行扩展。假设这种多尺度、分层、L-V 模型将能够捕获工程产品和技术的生态系统类型交互以及性能演变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel McAdams其他文献
Daniel McAdams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel McAdams', 18)}}的其他基金
Intergovernmental Personnel Award
政府间人才奖
- 批准号:
2242685 - 财政年份:2022
- 资助金额:
$ 14.82万 - 项目类别:
Intergovernmental Personnel Award
Multiscale Analysis of Residual Stresses with Novel Non-Destructive and Destructive Approaches using Surface Displacement Measurements
使用表面位移测量通过新颖的非破坏性和破坏性方法进行残余应力的多尺度分析
- 批准号:
1663435 - 财政年份:2017
- 资助金额:
$ 14.82万 - 项目类别:
Standard Grant
Collaborative Research: Delegated Decision Making in Value-Driven Systems Engineering
协作研究:价值驱动系统工程中的委托决策
- 批准号:
1333454 - 财政年份:2013
- 资助金额:
$ 14.82万 - 项目类别:
Standard Grant
EAGER: Foundations for Combining Normative and Behavioral Research Methodologies to Study Systems Engineering
EAGER:结合规范和行为研究方法来研究系统工程的基础
- 批准号:
1346553 - 财政年份:2013
- 资助金额:
$ 14.82万 - 项目类别:
Standard Grant
Collaborative Research: KINdReD: Knowledge and Methods for Inclusive Product Design
合作研究:KINdReD:包容性产品设计的知识和方法
- 批准号:
1200256 - 财政年份:2012
- 资助金额:
$ 14.82万 - 项目类别:
Standard Grant
EFRI-ODISSEI: Synthesizing Ccomplex Structures from Programmable Self-Folding Active Materials
EFRI-ODISSEI:从可编程自折叠活性材料合成 C 复合结构
- 批准号:
1240483 - 财政年份:2012
- 资助金额:
$ 14.82万 - 项目类别:
Standard Grant
Workshop/Collaborative Research: Charting a Course for Computer-Aided Bio-inspired Design Research; Palo Alto, California; March 20, 2011
研讨会/合作研究:制定计算机辅助仿生设计研究课程;
- 批准号:
1110094 - 财政年份:2011
- 资助金额:
$ 14.82万 - 项目类别:
Standard Grant
Collaborative Research: A Biomimetic Concept Generator for Engineering Design
协作研究:工程设计的仿生概念生成器
- 批准号:
0800772 - 财政年份:2008
- 资助金额:
$ 14.82万 - 项目类别:
Standard Grant
SGER Collaborative Research: VisualizeIT - Measuring the Impact of IT-Enabled Concept Generation on Designer Creativity
SGER 协作研究:VisualizeIT - 衡量 IT 支持的概念生成对设计师创造力的影响
- 批准号:
0840969 - 财政年份:2008
- 资助金额:
$ 14.82万 - 项目类别:
Standard Grant
相似国自然基金
非光滑区域上具有高对比系数椭圆方程及带剧烈振荡位势薛定谔型方程的均匀化定量理论
- 批准号:12371096
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
分子尺度微波选择性加热特性的定量测量与理论建模
- 批准号:22308250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
电离层极紫外-远紫外遥感的辐射传输与定量反演理论研究
- 批准号:42374184
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
长壁开采地表残余下沉时空定量预计理论与方法
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
异形薄壁零件亚表面缺陷的相控阵激光超声定量表征理论与方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Theoretical Design Methods of Catalysts Based on Electronic Structure Theory and Their Applications to Design and Development of High-Performance Molecular Catalysts
基于电子结构理论的催化剂理论设计方法发展及其在高性能分子催化剂设计与开发中的应用
- 批准号:
22KJ0003 - 财政年份:2023
- 资助金额:
$ 14.82万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
- 批准号:
10575550 - 财政年份:2023
- 资助金额:
$ 14.82万 - 项目类别:
Quantitative model of jaw proprioception during active movements
主动运动过程中下颌本体感觉的定量模型
- 批准号:
10750622 - 财政年份:2023
- 资助金额:
$ 14.82万 - 项目类别:
Data-driven theory : adversarial immunodynamics, modelling and machine learning for engineered lymphocytes in the context of cancer immunotherapy
数据驱动理论:癌症免疫治疗背景下工程淋巴细胞的对抗性免疫动力学、建模和机器学习
- 批准号:
480418 - 财政年份:2023
- 资助金额:
$ 14.82万 - 项目类别:
Operating Grants
Studies of multi-dimensional quantum walks by spectral scattering theory
光谱散射理论研究多维量子行走
- 批准号:
23K03224 - 财政年份:2023
- 资助金额:
$ 14.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)