UNS: Collaborative Research: Unique binding geometries: Engineering & Modeling of Sticky Patches on Lipid Nanoparticles for Effective Targeting of Otherwise Untargetable cells
UNS:合作研究:独特的结合几何形状:工程
基本信息
- 批准号:1510149
- 负责人:
- 金额:$ 22.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Sofou, Stavroula / Kevrekidis, Yannis G. Proposal Number: 1510015 / 1510149 This proposal aims to explore and understand the behavior of drug-carrying nanoparticles whose surface becomes reorganized and forms "sticky patches" when they get close to cancer cells. These new binding geometries have the potential to significantly expand the types of cancer cells that can be targeted with therapeutic agents. The project combines this targeting approach with single molecule optical measurements and mathematical modeling, to understand the mechanisms, and inform the design of optimized particles. Based on promising initial results in selectively targeting and treating cancer cells using drug-carrying nanoparticles, the investigators will explore and understand the behavior of drug-carrying lipid nanoparticles whose surface phase-separates to form "sticky patches" proximally to tumor cells. The underlying hypotheses are that the targeting success lies in the dense concentration of the binding ligands on these patches, and that the transport and binding kinetics of these novel binding geometries give significantly longer binding times resulting in internalization. These hypotheses will be addressed through four specific aims, which include: 1) Using collective measurements, evaluation of the kinetics of effective cell binding (association), dissociation and internalization processes of sticky lipid nanoparticles; 2) Using single molecule optical tracking techniques, evaluation of the lifetime of the nanoparticle-receptor(s) complex, of the number of nanoparticle-associated receptors that lead to cellular internalization of the complex, and of potential co-localization of receptors for each cell-associated nanoparticle; 3) Development, implementation and use of an experimentally informed general computational tool to test the mechanistic hypotheses, to evaluate the relative importance of the physical and chemical attributes of the nanoparticles used, and ultimately to help design them so as to optimally/selectively target otherwise untargetable cancers; and 4) Utilization of the mathematical model to optimize the design of sticky lipid nanoparticles, and to evaluate their efficacy in vitro. The proposed approach introduces an new geometry for nanoparticles to bind otherwise untargetable cancer cells, and has the potential to ultimately improve the quality of life of patients with advanced cancer and extend their life expectancy. Through this activity the investigators will cross-train one Ph.D. student (at Rutgers) with focus on physical chemistry and self-assembly of heterogeneous lipid membranes, and a second Ph.D. student (at Princeton) with focus on multiscale modeling and experimental biophysics optics. An international collaboration with Applied Mathematics in Oxford will involve a third PhD student, who will repeatedly visit Princeton/Rutgers to interact with the PIs. The investigators will integrate this research in their mentoring of undergraduate students, curriculum development and expansion of undergraduate programs. High school student outreach programs already in place will be supported, in addition to the development and dissemination of educational materials highlighting this research. This award is co-funded by the Biomedical Engineering Program in the Chemical, Bioengineering, Environmental and Transport Systems Division; by Mathematical Sciences through the Mathematical Sciences Innovation Incubator Program; and by the Directorate of Mathematical and Physical Sciences through the Office of Multidisciplinary Activities.
PI:Sofou,Stavroula / Kevrekidis,Yannis G.提案编号:1510015 /1510149该建议旨在探索和了解携带药物的纳米颗粒的行为,这些纳米颗粒的表面被重组并形成“粘稠的斑块”,当它们靠近癌细胞时。这些新的结合几何形状有可能显着扩展可以用治疗剂靶向的癌细胞的类型。该项目将这种靶向方法与单分子光学测量和数学建模相结合,以了解机制并告知优化颗粒的设计。基于有希望的初始结果,使用药物携带纳米颗粒选择性地靶向和治疗癌细胞,研究人员将探索和理解携带药物的脂质纳米颗粒的行为,其表面相分离为在肿瘤细胞上形成“粘性斑块”以形成“粘性斑块”。潜在的假设是,靶向成功在于这些斑块上结合配体的致密浓度,并且这些新型结合几何形状的转运和结合动力学的结合时间显着更长,从而产生了更长的结合时间,从而导致内在化。这些假设将通过四个特定目的来解决,其中包括:1)使用集体测量,评估有效细胞结合的动力学(缔合),粘性脂质纳米颗粒的分离和内在化过程; 2)使用单分子光跟踪技术,评估纳米颗粒受体络合物的寿命,与纳米粒子相关受体的数量,导致复合物的细胞内在化以及每个与每个细胞相关的纳米粒子的受体的潜在共定位; 3)开发,实施和使用实验知情的一般计算工具,以测试机械假设,以评估所使用的纳米粒子的物理和化学属性的相对重要性,并最终帮助设计它们以最佳/选择性地靶向否则否则不可捕获的癌症; 4)利用数学模型来优化粘性脂质纳米颗粒的设计,并在体外评估其功效。提出的方法引入了一种新的几何形状,以使纳米颗粒结合原本不可销的癌细胞,并有可能最终改善晚期癌症患者的生活质量并延长预期寿命。通过这项活动,研究人员将跨越一位博士学位。学生(在罗格斯)着重于物理化学和异质脂质膜的自组装,以及第二博士学位。学生(在普林斯顿)专注于多尺度建模和实验生物物理学光学。与牛津大学应用数学合作的国际合作将涉及第三位博士生,他们将反复访问普林斯顿/罗格斯与PIS互动。研究人员将将这项研究纳入他们对本科生的指导,课程发展和扩大本科课程的扩展。除了开发和传播教育材料以强调这项研究外,还将支持已经制定的高中学生外展计划。该奖项由化学,生物工程,环境和运输系统部的生物医学工程计划共同资助;通过数学科学通过数学科学创新孵化器计划;以及通过多学科活动办公室的数学和物理科学局。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yannis Kevrekidis其他文献
Data-driven cold starting of good reservoirs
- DOI:
10.1016/j.physd.2024.134325 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Lyudmila Grigoryeva;Boumediene Hamzi;Felix P. Kemeth;Yannis Kevrekidis;G. Manjunath;Juan-Pablo Ortega;Matthys J. Steynberg - 通讯作者:
Matthys J. Steynberg
Yannis Kevrekidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yannis Kevrekidis', 18)}}的其他基金
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
- 批准号:
1462241 - 财政年份:2015
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant
Collaborative Research: A Distributed Approximate Dynamic Programming Approach for Robust Adaptive Control of Multiscale Dynamical Systems
协作研究:多尺度动力系统鲁棒自适应控制的分布式近似动态规划方法
- 批准号:
1406224 - 财政年份:2014
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Data-Driven Predictive Modeling of Flows Containing Aggregating Particles
CDS
- 批准号:
1404832 - 财政年份:2014
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: The Integration of Data-Mining with Multiscale Engineering Computations
CDS
- 批准号:
1310173 - 财政年份:2013
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Accelerating Innovation in Agent-Based Simulations: Application to Complex Socio-Behavioral Phenomena
EAGER/协作研究:加速基于代理的模拟创新:在复杂社会行为现象中的应用
- 批准号:
1002469 - 财政年份:2010
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Modeling of Solid Tumor
合作研究:实体瘤的多尺度建模
- 批准号:
0817891 - 财政年份:2008
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant
Collaborative Research-Smoluchowski Equations: Analysis of Dynamics, Singularities and Statistics in Complex Fluid-Particle Mixtures.
协作研究-Smoluchowski 方程:复杂流体-粒子混合物中的动力学、奇异性和统计分析。
- 批准号:
0504099 - 财政年份:2005
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant
Collaborative Research:ITR/AP: Enabling Microscopic Simulators to Perform System-Level Analysis
合作研究:ITR/AP:使微观模拟器能够执行系统级分析
- 批准号:
0205484 - 财政年份:2002
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant
Evolution PDEs in Inhomogeneous Media: Low-Dimensional Dynamics, Computation and Applications
非均匀介质中的演化偏微分方程:低维动力学、计算和应用
- 批准号:
9711224 - 财政年份:1997
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2129627 - 财政年份:2021
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2028541 - 财政年份:2020
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
- 批准号:
2028371 - 财政年份:2020
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Dynamics of Active Particles in Anisotropic Fluids
UNS:合作研究:各向异性流体中活性粒子的动力学
- 批准号:
1852379 - 财政年份:2018
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Effects of Nano-Bio Interactions on Nanoparticle Fate and Transport in Porous Media
UNS:合作研究:纳米生物相互作用对多孔介质中纳米颗粒命运和传输的影响
- 批准号:
1705346 - 财政年份:2017
- 资助金额:
$ 22.57万 - 项目类别:
Standard Grant