CDS&E: Collaborative Research: Data-Driven Predictive Modeling of Flows Containing Aggregating Particles
CDS
基本信息
- 批准号:1404832
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CBET-1404826/1404832Sinno/KevrikidisFluid flows containing complex particles that interact with each other and with vessel walls are a central feature of an enormous range of biological, chemical, and physical processes, and the potential scientific and technological impact of having access to predictive computer models is difficult to overstate. Consequently, improvements in computer simulations for aggregating particulate flows have been actively sought for many years, and to date have been driven largely by increased availability of computer power coupled with advances in mathematical algorithms and techniques. As this trend continues, computational modeling is increasingly blessed (and cursed) by the "big data" streams generated by high resolution experimental measurements and/or by detailed computational simulations. In particular, the meaningful comparison of computational outputs and experimental measurements, both of which are large, complex, and statistically noisy, has emerged as a key challenge. As a result, models often capture many qualitative phenomena correctly but their predictive ability, and hence their usefulness to industry and manufacturing, becomes increasingly hard to establish and exploit. The proposed work seeks to close this gap by implementing, extending and exploiting a broad (and evolving) set of novel data mining techniques that enable new ways of linking tailored experiments to smartly designed simulations and back to model building. A multifaceted approach will be pursued to interrogate and use data jointly from a multiscale/multi-element model and two particulate-flow experimental systems. The experimental systems include a "target" system (platelets in blood), whose predictive description is ultimately sought, and a "model" system (DNA-functionalized colloids in water), which will be used to develop methods and help interpret the more complicated target. Both systems are defined by "complex" particles that exhibit time-dependent adhesivity leading to transiently evolving aggregates at a specified location on the vessel surface. Modern data mining techniques will be exploited and extended to process the native, high-dimensional data generated by these three sources to discover low-dimensional statistical measures that enable meaningful merging/comparisons of data streams from different sources and runs. Ultimately, the project deliverables are (i) a better understanding of the physical, chemical and biological mechanisms operating in these complex systems, (ii) data-enhanced and data-validated engineering models, and (iii) experimental design rules for complex, multi-parameter systems.
CBET-1404826/1404832Sinno/Kevrikidis 含有相互相互作用以及与容器壁相互作用的复杂颗粒的流体是众多生物、化学和物理过程的核心特征,也是使用预测计算机的潜在科学和技术影响模型的重要性怎么强调都不为过。 因此,多年来人们一直在积极寻求对聚集颗粒流的计算机模拟的改进,并且迄今为止,这在很大程度上是由计算机能力的增强以及数学算法和技术的进步所推动的。 随着这种趋势的继续,计算建模越来越受到高分辨率实验测量和/或详细计算模拟生成的“大数据”流的祝福(和诅咒)。 特别是,对计算输出和实验测量进行有意义的比较,这两者都是庞大、复杂且统计噪声的,已成为一个关键挑战。 因此,模型通常能够正确地捕捉许多定性现象,但它们的预测能力以及它们对工业和制造业的有用性却变得越来越难以建立和利用。 拟议的工作旨在通过实施、扩展和利用一系列广泛(且不断发展)的新颖数据挖掘技术来缩小这一差距,这些技术能够以新的方式将定制实验与智能设计的模拟联系起来并返回到模型构建。将采用多方面的方法来联合询问和使用来自多尺度/多元素模型和两个颗粒流实验系统的数据。 实验系统包括最终寻求预测性描述的“目标”系统(血液中的血小板)和“模型”系统(水中的 DNA 功能化胶体),该系统将用于开发方法并帮助解释更复杂的情况。目标。 这两个系统均由“复杂”颗粒定义,这些颗粒表现出随时间变化的粘附性,导致在容器表面的指定位置瞬时形成聚集体。 将利用和扩展现代数据挖掘技术来处理这三个来源生成的本机高维数据,以发现低维统计度量,从而能够对来自不同来源和运行的数据流进行有意义的合并/比较。 最终,项目可交付成果是(i)更好地理解这些复杂系统中运行的物理、化学和生物机制,(ii)数据增强和数据验证的工程模型,以及(iii)复杂、多系统的实验设计规则-参数系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yannis Kevrekidis其他文献
Yannis Kevrekidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yannis Kevrekidis', 18)}}的其他基金
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
- 批准号:
1462241 - 财政年份:2015
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Unique binding geometries: Engineering & Modeling of Sticky Patches on Lipid Nanoparticles for Effective Targeting of Otherwise Untargetable cells
UNS:合作研究:独特的结合几何形状:工程
- 批准号:
1510149 - 财政年份:2015
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: A Distributed Approximate Dynamic Programming Approach for Robust Adaptive Control of Multiscale Dynamical Systems
协作研究:多尺度动力系统鲁棒自适应控制的分布式近似动态规划方法
- 批准号:
1406224 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: The Integration of Data-Mining with Multiscale Engineering Computations
CDS
- 批准号:
1310173 - 财政年份:2013
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Accelerating Innovation in Agent-Based Simulations: Application to Complex Socio-Behavioral Phenomena
EAGER/协作研究:加速基于代理的模拟创新:在复杂社会行为现象中的应用
- 批准号:
1002469 - 财政年份:2010
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Modeling of Solid Tumor
合作研究:实体瘤的多尺度建模
- 批准号:
0817891 - 财政年份:2008
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research-Smoluchowski Equations: Analysis of Dynamics, Singularities and Statistics in Complex Fluid-Particle Mixtures.
协作研究-Smoluchowski 方程:复杂流体-粒子混合物中的动力学、奇异性和统计分析。
- 批准号:
0504099 - 财政年份:2005
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research:ITR/AP: Enabling Microscopic Simulators to Perform System-Level Analysis
合作研究:ITR/AP:使微观模拟器能够执行系统级分析
- 批准号:
0205484 - 财政年份:2002
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Evolution PDEs in Inhomogeneous Media: Low-Dimensional Dynamics, Computation and Applications
非均匀介质中的演化偏微分方程:低维动力学、计算和应用
- 批准号:
9711224 - 财政年份:1997
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245298 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
- 批准号:
2302618 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: A Symbolic Artificial Intelligence Framework for Discovering Physically Interpretable Constitutive Laws of Soft Functional Composites
CDS
- 批准号:
2244952 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: 3-D Stellar Hydrodynamics of Convective Penetration and Convective Boundary Mixing in Massive Stars
合作研究:CDS
- 批准号:
2309102 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant