Perspectives on Complex Algebraic Geometry
复杂代数几何的观点
基本信息
- 批准号:1502166
- 负责人:
- 金额:$ 2.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-15 至 2016-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides funding for the workshop "Perspectives on Complex Algebraic Geometry" to take place May 22-25, 2015 at Columbia University, New York, New York. Algebraic Geometry is the study of the solutions of polynomial equations in several variables. As polynomials arise in every topic that can be studied numerically, algebraic geometry plays a central role within mathematics and has close ties to the sciences. The field traces its roots back to the foundations of mathematics, has led to some of the most significant mathematical accomplishments in the past hundred years, and continues to be a burgeoning and vital field today. Within the field of algebraic geometry, complex algebraic geometry plays a special role. Namely, the complex structure of the solution sets allows for a wide range of techniques, including those from geometry, analysis, and topology. Some of the most powerful techniques involve the use of Hodge theory, which uses harmonic theory on compact manifolds to relate the topology, complex structure, and algebraic properties of the solutions sets. Recently, the connections with physics have played an increasingly important role in algebraic geometry. Many questions in physics can be phrased naturally in the language of differential geometry. Through deep and surprising connections that exist between differential geometry and complex algebraic geometry, some of these questions can be addressed using the techniques of algebraic geometry. Questions posed by physicists have been solved using techniques developed by algebraic geometers. In turn, recent developments in physics have led to astonishing new results and open problems in algebraic geometry.The purpose of the workshop is to survey the recent developments in the field of complex algebraic geometry with a focus on the following 3 main topics: (1) Topology and geometry of algebraic surfaces and 4-manifolds, (2) Vector bundles and G-bundles, and (3) Geometric applications of Hodge theory. These are central topics in the field of complex algebraic geometry, that have seen a number of interesting recent developments, and lie at the intersection of a number of fields of mathematics, but which have been less well represented lately in terms of workshops. The workshop will bring together some of the leading experts in the field, as well as a number of young researchers, who will further propel developments in these directions. More details on the conference can be found at its website: https://sites.google.com/site/complexalgebraicgeometry/.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aise de Jong其他文献
Aise de Jong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aise de Jong', 18)}}的其他基金
The Stacks Project in Algebraic Geometry
代数几何中的 Stacks 项目
- 批准号:
1601160 - 财政年份:2016
- 资助金额:
$ 2.45万 - 项目类别:
Standard Grant
Algebraic geometry over finite fields
有限域上的代数几何
- 批准号:
0600425 - 财政年份:2006
- 资助金额:
$ 2.45万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
- 批准号:
0554442 - 财政年份:2006
- 资助金额:
$ 2.45万 - 项目类别:
Standard Grant
Moduli of Azumaya algebras, vector bundles and applications
Azumaya 代数模、向量丛和应用
- 批准号:
0245203 - 财政年份:2003
- 资助金额:
$ 2.45万 - 项目类别:
Continuing Grant
Birational Geometry and Rational Connectedness
双有理几何和有理关联
- 批准号:
0201423 - 财政年份:2002
- 资助金额:
$ 2.45万 - 项目类别:
Continuing Grant
Reductive Group Actions and Their Invariants
还原群动作及其不变量
- 批准号:
9970165 - 财政年份:1999
- 资助金额:
$ 2.45万 - 项目类别:
Standard Grant
Curves Over Finite Fields and Deligne's Conjectures
有限域上的曲线和德利涅猜想
- 批准号:
9970049 - 财政年份:1999
- 资助金额:
$ 2.45万 - 项目类别:
Continuing Grant
Applications of Moduli Spaces of Maps of Nodal Curves
节点曲线图模空间的应用
- 批准号:
9970101 - 财政年份:1999
- 资助金额:
$ 2.45万 - 项目类别:
Standard Grant
相似国自然基金
基于Clifford代数的复杂曲面机器人铣削轨迹误差补偿策略研究
- 批准号:51805380
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于微分代数方程的随机生物经济系统建模与复杂性分析
- 批准号:61703083
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
信息物理系统中复杂并发行为的形式化建模与验证
- 批准号:61772038
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
面向复杂二元关系的信息粒化机制和代数结构研究
- 批准号:61603278
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
低算子复杂度的高效并行AMG法及其在两类PDEs中的应用
- 批准号:11601462
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bifurcations in Complex Algebraic Dynamics
复杂代数动力学中的分岔
- 批准号:
2246630 - 财政年份:2023
- 资助金额:
$ 2.45万 - 项目类别:
Standard Grant
Algebraic analysis of deformations of non-isolated singularities, computational complex analysis and algorithms
非孤立奇点变形的代数分析、计算复杂性分析和算法
- 批准号:
22K03334 - 财政年份:2022
- 资助金额:
$ 2.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of complex spherical codes and designs by algebraic methods
用代数方法研究复杂的球形代码和设计
- 批准号:
22K03410 - 财政年份:2022
- 资助金额:
$ 2.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complex Analysis in Algebraic Geometry for Symbolic Computation
符号计算的代数几何中的复分析
- 批准号:
574677-2022 - 财政年份:2022
- 资助金额:
$ 2.45万 - 项目类别:
University Undergraduate Student Research Awards
Topological bridges between circuits, models, and behavior
电路、模型和行为之间的拓扑桥梁
- 批准号:
10208403 - 财政年份:2021
- 资助金额:
$ 2.45万 - 项目类别: