Foundations of Algebraic Stacks

代数栈的基础

基本信息

  • 批准号:
    1303247
  • 负责人:
  • 金额:
    $ 18.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

This project aims to stimulate and actively develop research on algebraic stacks. Algebraic stacks are widely used, especially for thinking about moduli spaces, and are one of the most important tools in algebraic geometry today. The research will focus on foundational questions and open questions related to global geometric problems. Two questions are: How far can you get developing the theory with a minimal set of hypotheses? In what generality can we develop intersection theory for algebraic stacks? Two geometric open problems are: Which algebraic stacks are quotient stacks? Are the Brauer group and the cohomological Brauer group of a separated scheme of finite type over a field the same?The principal investigator will visit mathematics departments and give talks to advertise these problems. The principal investigator will attack some of the research problems, and collaborate on others with graduate students, post-docs, and algebraic geometers in the international mathematical community. As an integral part of the proposal the principal investigator will maintain a web-based collaborative algebraic geometry project, called the "Stacks Project." The goal is to develop and document theory, with the aim of closing the gap between graduate education and current research. The stacks project intends to be partly a high level text book, partly a foundational reference on algebraic stacks.
该项目旨在刺激并积极开发有关代数堆栈的研究。代数堆栈被广泛使用,尤其是用于思考模量空间,并且是当今代数几何形状中最重要的工具之一。该研究将重点放在与全球几何问题有关的基本问题和开放问题上。两个问题是:您能以最少的假设来发展多远?我们可以在哪些一般性中开发代数堆栈的交点理论?两个几何开放问题是:哪些代数堆栈是商堆栈? Brauer集团和同时的Brauer集团是否在一个领域相同的有限类型方案?主要调查员将访问数学部门并进行会谈以宣传这些问题。首席研究人员将攻击一些研究问题,并与国际数学社区中的研究生,DOCS和代数几何图形与其他研究人员合作。作为提案不可或缺的一部分,主要研究人员将维护一个基于网络的协作代数几何项目,称为“堆栈项目”。目的是开发和记录理论,目的是缩小研究生教育与当前研究之间的差距。堆栈项目打算部分成为一本高级教科书,部分是代数堆栈的基础参考。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Aise de Jong的其他基金

The Stacks Project in Algebraic Geometry
代数几何中的 Stacks 项目
  • 批准号:
    1601160
    1601160
  • 财政年份:
    2016
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Standard Grant
    Standard Grant
Perspectives on Complex Algebraic Geometry
复杂代数几何的观点
  • 批准号:
    1502166
    1502166
  • 财政年份:
    2015
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Standard Grant
    Standard Grant
Algebraic Stacks
代数栈
  • 批准号:
    0970108
    0970108
  • 财政年份:
    2010
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Algebraic geometry over finite fields
有限域上的代数几何
  • 批准号:
    0600425
    0600425
  • 财政年份:
    2006
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
  • 批准号:
    0554442
    0554442
  • 财政年份:
    2006
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Standard Grant
    Standard Grant
Moduli of Azumaya algebras, vector bundles and applications
Azumaya 代数模、向量丛和应用
  • 批准号:
    0245203
    0245203
  • 财政年份:
    2003
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Birational Geometry and Rational Connectedness
双有理几何和有理关联
  • 批准号:
    0201423
    0201423
  • 财政年份:
    2002
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Reductive Group Actions and Their Invariants
还原群动作及其不变量
  • 批准号:
    9970165
    9970165
  • 财政年份:
    1999
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Standard Grant
    Standard Grant
Curves Over Finite Fields and Deligne's Conjectures
有限域上的曲线和德利涅猜想
  • 批准号:
    9970049
    9970049
  • 财政年份:
    1999
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Applications of Moduli Spaces of Maps of Nodal Curves
节点曲线图模空间的应用
  • 批准号:
    9970101
    9970101
  • 财政年份:
    1999
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

广义四元数代数上的若干超矩阵方程组及应用
  • 批准号:
    12371023
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
Fock-Sobolev空间上的算子与算子代数
  • 批准号:
    12371127
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
李代数与有限W代数的Whittaker型表示和有限维表示
  • 批准号:
    12371026
  • 批准年份:
    2023
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
两流体代数模型新拓展及对反常核结构现象的理论研究
  • 批准号:
    12375113
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
代数K理论、代数数论及其在编码密码中的应用
  • 批准号:
    12371035
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Moduli stacks: curves, stable reduction and arithmetic
模数堆栈:曲线、稳定归约和算术
  • 批准号:
    22KF0205
    22KF0205
  • 财政年份:
    2023
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
    Grant-in-Aid for JSPS Fellows
Algebraic and Arithmetic Geometry via Stacks
通过堆栈学习代数和算术几何
  • 批准号:
    RGPIN-2022-02980
    RGPIN-2022-02980
  • 财政年份:
    2022
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Discovery Grants Program - Individual
    Discovery Grants Program - Individual
The investigation of the non-triviality of string topology in a topological quantum field theory and differentiable stacks
拓扑量子场论和可微堆栈中弦拓扑非平凡性的研究
  • 批准号:
    21H00982
    21H00982
  • 财政年份:
    2021
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Moduli spaces and algebraic stacks
模空间和代数栈
  • 批准号:
    2602365
    2602365
  • 财政年份:
    2021
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Studentship
    Studentship
Advances in Moduli Spaces and Algebraic Stacks
模空间和代数栈的进展
  • 批准号:
    1801976
    1801976
  • 财政年份:
    2018
  • 资助金额:
    $ 18.12万
    $ 18.12万
  • 项目类别:
    Standard Grant
    Standard Grant