EAGER: Novel Catalyst Design Using Hierarchical Hybrid Materials
EAGER:使用分层混合材料的新型催化剂设计
基本信息
- 批准号:1449582
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Novel catalyst design by tailored integration of nanomaterials with larger porous scaffoldsCatalysts are an enabling technology critical to key industrial sectors such as water, energy, chemicals, and pharmaceuticals. The effectiveness of any solid catalyst strongly depends upon the availability of surface reactive sites. Nanomaterials (that have dimensions in 1-100 nm range) provide significant advantages in this regard because they offer exceptionally higher surface area per unit mass compared to conventional materials. However, nanocatalysts are generally deployed as loose powders or colloids that can easily disperse into the surroundings, posing serious health and environmental risks. The goal of this EAGER award project made to Professor Sharmila Mukhopadhyay at Wright State University is to explore if this dilemma can be resolved by combining the advantages of nanomaterials with the structural integrity of robust solids. In natural biological surfaces such as intestinal and bronchial linings, an extremely high level of interaction in a compact space is enabled through "hierarchical" and "hybrid" architectures, in which larger scaffolds provide mechanical support and progressively smaller specialized attachments offer additional functional properties. This project will explore if and how the same concept can be adapted to catalyst design, starting with porous solid scaffolds and enhancing them with controlled sequence of strongly adhered nano-scale catalytic materials such as carbon nanotubes, oxide coated nanotubes, and metal nanoparticles. The payoff can be very high, since it will enable creation of innovative surface-driven devices including catalysts, sensors and energy storage components. Another benefit from this project will be educational components relating nanotechnology with catalysis and environmental sustainability. All participants in this project are involved in student mentoring as well as development of K-12 educational modules. Outreach programs that will benefit from this project include pre-college offerings for disadvantaged students and training camps for STEM Teachers.The goal of this project is to provide in-depth understanding of processing and properties of hierarchical hybrid materials, in which well-tailored distribution of nanoscale components of varying dimensions are anchored on larger porous scaffolds. Scaffold support materials envisioned are foams or fabric of carbon, whose specific surface areas are increased by several orders of magnitude through controlled attachment of carpet-like arrays of carbon nanotubes. These nanotubes may be coated with oxide layers for increased surface wettability and/or improved catalyst-support interactions. Finally these nanotube-enhanced scaffold surfaces will be functionalized with catalyst nanoparticles such as palladium. The materials synthesized will be used to degrade a model water-borne pollutant, trichloroethene (TCE), which is widely used by industry and known for its toxicity and persistence in ground-water. This project will answer three very basic questions relevant to surface-active devices: (i) Is it possible to attach multiple nano-catalysts to a single robust solid with sufficient control? (ii) Would the integrated hybrid material retain or improve the benefits of each component? If so, how does the integrated solid compare with its components and with conventional catalyst pellets and powders? (iii) Are these structures suitable for prolonged use? The answers to these questions can provide the groundwork for integrating advanced nanocatalysts into larger solid devices.
通过量身定制的纳米材料与较大的多孔脚手造型药物的量身定制的催化剂设计是一种对关键工业部门(例如水,能源,化学物质和药品)至关重要的技术。任何固体催化剂的有效性都在很大程度上取决于表面反应性位点的可用性。 纳米材料(在1-100 nm范围内具有尺寸)在这方面具有显着优势,因为与常规材料相比,它们提供的每单位质量表面积极高。 但是,通常将纳米催化剂作为松散的粉末或胶体部署,可以轻松地分散到周围环境中,从而带来严重的健康和环境风险。赖特州立大学(Wright State University)向夏尔米拉·穆卡帕德(Sharmila Mukhopadhyay)教授提出的急切奖项项目的目标是探索是否可以通过将纳米材料的优势与稳健固体的结构完整性相结合来解决这种困境。在诸如肠道和支气管衬里等自然生物表面中,通过“分层”和“混合”结构实现了紧凑空间中极高的相互作用,其中较大的脚手架提供机械支撑,并逐渐较小的专业附件提供了其他功能性能。该项目将探讨是否以及如何以多孔的固体支架开始,并使用强烈粘附的纳米级催化材料(例如碳纳米管,氧化物涂层的纳米管和金属纳米颗粒)来增强它们是否可以适应催化剂设计。 收益可能很高,因为它将能够创建创新的表面驱动设备,包括催化剂,传感器和能源储能组件。该项目的另一个好处是将纳米技术与催化和环境可持续性有关的教育组成部分。该项目的所有参与者都参与学生指导以及K-12教育模块的发展。 将从该项目中受益的外展计划包括为处境不利的学生提供的预科产品和为STEM教师提供的培训营。该项目的目的是对层次混合材料的处理和属性进行深入了解,其中较大的多孔粉丝的纳米级组件的纳米级分量分布良好。 设想的脚手架支撑材料是碳的泡沫或织物,其特定的表面积通过受控的地毯状碳纳米管阵列受控数量级增加了几个数量级。 这些纳米管可能涂有氧化物层,以增加表面润湿性和/或改善催化剂 - 支持的相互作用。最后,这些纳米管增强的支架表面将用催化剂纳米颗粒(例如钯)功能化。合成的材料将用于降解模型的水传播污染物三氯乙烯(TCE),该污染物被行业广泛使用,并以其在地下水中的毒性和持久性而闻名。 该项目将回答与表面活性设备相关的三个非常基本的问题:(i)是否可以将多个纳米催化剂连接到具有足够控制的单个稳健固体? (ii)集成的混合材料会保留或改善每个组件的好处吗?如果是这样,集成的固体与其成分以及常规的催化剂颗粒和粉末的比较如何? (iii)这些结构适合长时间使用?这些问题的答案可以为将高级纳米催化剂整合到更大的固体设备中提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharmila Mukhopadhyay其他文献
Sharmila Mukhopadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sharmila Mukhopadhyay', 18)}}的其他基金
EAGER: Novel Bio-inspired 3D Materials for Surface-Active Devices
EAGER:用于表面活性器件的新型仿生 3D 材料
- 批准号:
2022000 - 财政年份:2020
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
A New Look at Classic Materials Systems: Advanced Synchrotron X-ray Characterization of Colloidal Nanocrystals
经典材料系统的新视角:胶体纳米晶体的先进同步加速器 X 射线表征
- 批准号:
1708617 - 财政年份:2017
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
EAGER: Novel Bio-inspired 3D Materials for Surface-Active Devices
EAGER:用于表面活性器件的新型仿生 3D 材料
- 批准号:
1747826 - 财政年份:2017
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Acquisition of Ultra-High Vacuum Photoelectron Spectroscopy Facility
购置超高真空光电子能谱设备
- 批准号:
9871107 - 财政年份:1998
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
SGER: Improvement of the Superconductor-Metal Interface by Halogen Doping
SGER:通过卤素掺杂改善超导体-金属界面
- 批准号:
9521888 - 财政年份:1995
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
ROW: Influence of Dopants on Ceramic-Metal Bonding
ROW:掺杂剂对陶瓷-金属键合的影响
- 批准号:
9017450 - 财政年份:1991
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
相似国自然基金
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:32171163
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Selective C(sp3)–H Functionalization Enabled by Metal-Organic Framework Catalysis
金属有机框架催化实现选择性 C(sp3)–H 官能化
- 批准号:
10679785 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Patient oriented research and mentoring program in dermatologic diseases
以患者为中心的皮肤病研究和指导计划
- 批准号:
10685455 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Oxidative Lipidomics in Pediatric Traumatic Brain Injury
氧化脂质组学在小儿创伤性脑损伤中的应用
- 批准号:
10844023 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别: