EAGER: Novel Bio-inspired 3D Materials for Surface-Active Devices

EAGER:用于表面活性器件的新型仿生 3D 材料

基本信息

  • 批准号:
    1747826
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

This research project involves studying a new class of materials that can significantly improve the performance of currently available devices used in the energy, environmental, and biotech sectors of the economy. In recent decades, population growth, higher life expectancy and rapid industrialization have increased needs for water, energy, food, sanitation, and health care. For instance, the United States National Intelligence Council (USNIC) estimates that by 2030, societal demand in these areas will increase by 40-50%. Many of these increased demands can be addressed by advanced sensors, catalysts, membranes, and biomaterials that can, for instance, make it easier to remove chemical pollutants from water, detect and destroy pathogens, and carry out faster chemical and biological tests with improved precision and lower cost. Nanomaterials show great potential for such game-changing applications, but their use in actual devices has been rare, since they can easily escape into the surroundings posing high risk of material loss and environmental toxicity. This research project addresses this dilemma with a novel materials architecture that combines the power and efficiency of nanomaterials with the safety, durability and reusability of conventional solids. The specific goal of the project is to investigate bioinspired three-dimensional surfaces that combine the functional advantages of nanomaterials with the structural advantages of conventional solids. Such materials can provide a novel multifunctional platform for custom-tailored catalysts, antimicrobial agents, sensors and/or bio-scaffolds. The design concept is to enrich the surface of porous solid substrates with carpet-like arrays of carbon nanotubes (CNT) that can be further customized with nanoscale catalysts, sensors and biomolecules for tailoring their interaction with surrounding fluids. This architecture mimics natural biological materials such as microvilli and capillaries, where the larger membrane supports progressively smaller specialized attachments. This approach can offer exceptionally high levels of solid-fluid interaction in very compact space. Moreover, different regions of the same substrate can concurrently provide multiple simultaneous benefits in a single filter, reactor, or bio-engineering platform. Currently available devices do not use this architecture, due to the complexities of bonding dissimilar components that create multiple unknown interfaces. This project addresses these complex issues, and explores the possibility of synthesizing such materials for solid-fluid interactions involving catalysis, signal detection and cell scaffolding through the following research tasks: (1) investigation of nano-carpets on porous solids, and their affinity for different fluids; (2) study of chemical & catalytic reactions at hierarchical surfaces; and (3) understanding biological interaction of nano-carpets with peptides and living cells. In parallel with the research, education and outreach components are being developed for undergraduates, science teachers, community leaders as well as governmental policy personnel.
该研究项目涉及研究一类新型材料,该材料可以显着提高能源、环境和生物技术经济领域当前使用的设备的性能。近几十年来,人口增长、预期寿命延长和快速工业化增加了对水、能源、食品、卫生和医疗保健的需求。例如,美国国家情报委员会(USNIC)估计,到2030年,这些领域的社会需求将增加40-50%。许多这些增加的需求可以通过先进的传感器、催化剂、膜和生物材料来解决,例如,可以更容易地从水中去除化学污染物,检测和消灭病原体,并以更高的精度更快地进行化学和生物测试且成本更低。纳米材料在这种改变游戏规则的应用中显示出巨大的潜力,但它们在实际设备中的使用很少,因为它们很容易逃逸到周围环境中,造成材料损失和环境毒性的高风险。该研究项目通过一种新颖的材料结构解决了这一困境,该结构将纳米材料的功率和效率与传统固体的安全性、耐用性和可重复使用性结合起来。该项目的具体目标是研究仿生三维表面,将纳米材料的功能优势与传统固体的结构优势相结合。此类材料可以为定制催化剂、抗菌剂、传感器和/或生物支架提供新颖的多功能平台。设计理念是用地毯状的碳纳米管(CNT)阵列来丰富多孔固体基材的表面,这些碳纳米管阵列可以通过纳米级催化剂、传感器和生物分子进一步定制,以调整它们与周围流体的相互作用。这种结构模仿天然生物材料,如微绒毛和毛细血管,其中较大的膜支持逐渐较小的专门附件。这种方法可以在非常紧凑的空间中提供极高水平的固液相互作用。此外,同一基质的不同区域可以在单个过滤器、反应器或生物工程平台中同时提供多种益处。目前可用的设备不使用这种架构,因为粘合不同的组件会产生多个未知的接口,非常复杂。该项目解决了这些复杂的问题,并通过以下研究任务探索合成此类材料用于固液相互作用(涉及催化、信号检测和细胞支架)的可能性:(1)研究多孔固体上的纳米地毯及其对固体的亲和力。不同的液体; (2) 多级表面化学催化反应研究; (3)了解纳米地毯与肽和活细胞的生物相互作用。在开展研究的同时,正在为本科生、科学教师、社区领袖以及政府政策人员制定教育和外展部分。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aligned Carbon Nanotube Arrays Bonded to Solid Graphite Substrates: Thermal Analysis for Future Device Cooling Applications
  • DOI:
    10.3390/c4020028
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    64.5
  • 作者:
    Betty T. Quinton;Levi J. Elston;J. Scofield;S. Mukhopadhyay
  • 通讯作者:
    Betty T. Quinton;Levi J. Elston;J. Scofield;S. Mukhopadhyay
Robust nanocatalyst membranes for degradation of atrazine in water
用于降解水中莠去津的坚固纳米催化剂膜
  • DOI:
    10.1016/j.jwpe.2018.05.016
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Vijwani, H.;Nadagouda, M.N.;Mukhopadhyay, S.M.
  • 通讯作者:
    Mukhopadhyay, S.M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sharmila Mukhopadhyay其他文献

Sharmila Mukhopadhyay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sharmila Mukhopadhyay', 18)}}的其他基金

EAGER: Novel Bio-inspired 3D Materials for Surface-Active Devices
EAGER:用于表面活性器件的新型仿生 3D 材料
  • 批准号:
    2022000
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
A New Look at Classic Materials Systems: Advanced Synchrotron X-ray Characterization of Colloidal Nanocrystals
经典材料系统的新视角:胶体纳米晶体的先进同步加速器 X 射线表征
  • 批准号:
    1708617
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Novel Catalyst Design Using Hierarchical Hybrid Materials
EAGER:使用分层混合材料的新型催化剂设计
  • 批准号:
    1449582
  • 财政年份:
    2014
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Acquisition of Ultra-High Vacuum Photoelectron Spectroscopy Facility
购置超高真空光电子能谱设备
  • 批准号:
    9871107
  • 财政年份:
    1998
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
SGER: Improvement of the Superconductor-Metal Interface by Halogen Doping
SGER:通过卤素掺杂改善超导体-金属界面
  • 批准号:
    9521888
  • 财政年份:
    1995
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
ROW: Influence of Dopants on Ceramic-Metal Bonding
ROW:掺杂剂对陶瓷-金属键合的影响
  • 批准号:
    9017450
  • 财政年份:
    1991
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似国自然基金

海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
  • 批准号:
    2409620
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Antimicrobial biomaterials from bio-based feedstocks with novel feedstock supplementation strategies
采用新型原料补充策略的生物基原料制成的抗菌生物材料
  • 批准号:
    10063453
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Collaborative R&D
Develop novel processing for bio-based wadding material for fashion and textiles, with manufacturability assessment for scale-up
开发用于时装和纺织品的生物基填充材料的新型加工方法,并进行规模化的可制造性评估
  • 批准号:
    10036488
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Collaborative R&D
Towards Ultrasensitive Detection of Bacterial Extracellular Electron Transfer in Human Gut by Novel Functionalized Carbon Nanotube Electrode Interfaces and Organic Microbial Electrochemical Transistor
通过新型功能化碳纳米管电极接口和有机微生物电化学晶体管对人体肠道中细菌细胞外电子转移进行超灵敏检测
  • 批准号:
    23K13651
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Probing nano/bio interactions to understand and overcome biological barriers limiting nanomedicine
探索纳米/生物相互作用,以了解和克服限制纳米医学的生物障碍
  • 批准号:
    10623828
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了