EAGER: Novel Bio-inspired 3D Materials for Surface-Active Devices
EAGER:用于表面活性器件的新型仿生 3D 材料
基本信息
- 批准号:1747826
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project involves studying a new class of materials that can significantly improve the performance of currently available devices used in the energy, environmental, and biotech sectors of the economy. In recent decades, population growth, higher life expectancy and rapid industrialization have increased needs for water, energy, food, sanitation, and health care. For instance, the United States National Intelligence Council (USNIC) estimates that by 2030, societal demand in these areas will increase by 40-50%. Many of these increased demands can be addressed by advanced sensors, catalysts, membranes, and biomaterials that can, for instance, make it easier to remove chemical pollutants from water, detect and destroy pathogens, and carry out faster chemical and biological tests with improved precision and lower cost. Nanomaterials show great potential for such game-changing applications, but their use in actual devices has been rare, since they can easily escape into the surroundings posing high risk of material loss and environmental toxicity. This research project addresses this dilemma with a novel materials architecture that combines the power and efficiency of nanomaterials with the safety, durability and reusability of conventional solids. The specific goal of the project is to investigate bioinspired three-dimensional surfaces that combine the functional advantages of nanomaterials with the structural advantages of conventional solids. Such materials can provide a novel multifunctional platform for custom-tailored catalysts, antimicrobial agents, sensors and/or bio-scaffolds. The design concept is to enrich the surface of porous solid substrates with carpet-like arrays of carbon nanotubes (CNT) that can be further customized with nanoscale catalysts, sensors and biomolecules for tailoring their interaction with surrounding fluids. This architecture mimics natural biological materials such as microvilli and capillaries, where the larger membrane supports progressively smaller specialized attachments. This approach can offer exceptionally high levels of solid-fluid interaction in very compact space. Moreover, different regions of the same substrate can concurrently provide multiple simultaneous benefits in a single filter, reactor, or bio-engineering platform. Currently available devices do not use this architecture, due to the complexities of bonding dissimilar components that create multiple unknown interfaces. This project addresses these complex issues, and explores the possibility of synthesizing such materials for solid-fluid interactions involving catalysis, signal detection and cell scaffolding through the following research tasks: (1) investigation of nano-carpets on porous solids, and their affinity for different fluids; (2) study of chemical & catalytic reactions at hierarchical surfaces; and (3) understanding biological interaction of nano-carpets with peptides and living cells. In parallel with the research, education and outreach components are being developed for undergraduates, science teachers, community leaders as well as governmental policy personnel.
该研究项目涉及研究一类新的材料,这些材料可以显着提高经济能源,环境和生物技术领域中使用的当前可用设备的性能。近几十年来,人口增长,较高的预期寿命和快速工业化增加了对水,能源,食物,卫生和医疗保健的需求。例如,美国国家情报委员会(USNIC)估计,到2030年,这些地区的社会需求将增长40-50%。这些增加的需求中有许多可以通过高级传感器,催化剂,膜和生物材料来解决,例如,可以使从水中清除化学污染物,检测和破坏病原体并进行更快的化学和生物学测试,并以提高的精度和更低的成本进行更快的化学污染物。纳米材料对这种改变游戏规则的应用显示出很大的潜力,但是它们在实际设备中的使用很少,因为它们很容易逃脱到周围的环境,从而带来了物质损失和环境毒性的高风险。该研究项目通过一种新型的材料结构来解决这一难题,该材料结构将纳米材料的功率和效率与常规固体的安全性,耐用性和可重复使用相结合。该项目的具体目标是研究将纳米材料的功能优势与常规固体的结构优势相结合的生物启发的三维表面。这样的材料可以为定制的催化剂,抗菌剂,传感器和/或生物量表提供新颖的多功能平台。设计概念是用地毯状的碳纳米管(CNT)丰富多孔固体底物的表面,可以通过纳米级催化剂,传感器和生物分子来进一步定制,以量身定制其与周围液体的相互作用。该建筑模仿了自然生物学材料,例如微绒毛和毛细管,较大的膜支持逐渐较小的专业附件。这种方法可以在非常紧凑的空间中提供异常高水平的固体相互作用。此外,同一基板的不同区域可以同时在单个过滤器,反应堆或生物工程平台中提供多个同时好处。当前可用的设备不使用此体系结构,这是因为粘结不同的组件的复杂性会产生多个未知接口。该项目解决了这些复杂的问题,并探讨了通过以下研究任务综合这些材料以涉及催化,信号检测和细胞支架的固体液体相互作用的可能性:(1)研究多孔固体上的纳米棉花糖,以及它们对不同流体的亲和力; (2)研究分层表面的化学和催化反应; (3)理解纳米纤维与肽和活细胞的生物学相互作用。根据研究,正在为本科生,科学教师,社区领袖以及政府政策人员开发教育和外展成分。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aligned Carbon Nanotube Arrays Bonded to Solid Graphite Substrates: Thermal Analysis for Future Device Cooling Applications
- DOI:10.3390/c4020028
- 发表时间:2018-05
- 期刊:
- 影响因子:64.5
- 作者:Betty T. Quinton;Levi J. Elston;J. Scofield;S. Mukhopadhyay
- 通讯作者:Betty T. Quinton;Levi J. Elston;J. Scofield;S. Mukhopadhyay
Robust nanocatalyst membranes for degradation of atrazine in water
用于降解水中莠去津的坚固纳米催化剂膜
- DOI:10.1016/j.jwpe.2018.05.016
- 发表时间:2018
- 期刊:
- 影响因子:7
- 作者:Vijwani, H.;Nadagouda, M.N.;Mukhopadhyay, S.M.
- 通讯作者:Mukhopadhyay, S.M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharmila Mukhopadhyay其他文献
Sharmila Mukhopadhyay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sharmila Mukhopadhyay', 18)}}的其他基金
EAGER: Novel Bio-inspired 3D Materials for Surface-Active Devices
EAGER:用于表面活性器件的新型仿生 3D 材料
- 批准号:
2022000 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
A New Look at Classic Materials Systems: Advanced Synchrotron X-ray Characterization of Colloidal Nanocrystals
经典材料系统的新视角:胶体纳米晶体的先进同步加速器 X 射线表征
- 批准号:
1708617 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: Novel Catalyst Design Using Hierarchical Hybrid Materials
EAGER:使用分层混合材料的新型催化剂设计
- 批准号:
1449582 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Acquisition of Ultra-High Vacuum Photoelectron Spectroscopy Facility
购置超高真空光电子能谱设备
- 批准号:
9871107 - 财政年份:1998
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
SGER: Improvement of the Superconductor-Metal Interface by Halogen Doping
SGER:通过卤素掺杂改善超导体-金属界面
- 批准号:
9521888 - 财政年份:1995
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
ROW: Influence of Dopants on Ceramic-Metal Bonding
ROW:掺杂剂对陶瓷-金属键合的影响
- 批准号:
9017450 - 财政年份:1991
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:32171163
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Regeneration of Retina with Physiological Functions by Hybrid Culture and Evaluation of Drugs / Production of Novel iPS Cells for Transplantation.
通过混合培养和药物评估/生产用于移植的新型 iPS 细胞来再生具有生理功能的视网膜。
- 批准号:
23K09017 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evolution of a novel trait promoted by mechanical stress
机械应力促进新特性的进化
- 批准号:
23H00385 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Antimicrobial biomaterials from bio-based feedstocks with novel feedstock supplementation strategies
采用新型原料补充策略的生物基原料制成的抗菌生物材料
- 批准号:
10063453 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Collaborative R&D
Novel preparation of highly active iron-based alloy electrodes by anodic oxidation and their activation mechanism
阳极氧化新型高活性铁基合金电极制备及其活化机理
- 批准号:
23H00224 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (A)