SNM: Scalable Nanomanufacturing of Metasurfaces & Plasmonic Opto-Mechanical Systems
SNM:可扩展的超表面纳米制造
基本信息
- 批准号:1449397
- 负责人:
- 金额:$ 129.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-11-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanoarchitectures with subwavelength-sized metallic building blocks arranged on surfaces manipulate light matter interactions. These nanoengineered materials basically lay the foundation for a new, engineered way of controlling light, and pave the way for novel functional devices, unattainable with conventional optics benefitting applications including sensing, energy, imaging, and light guiding. Yet the lack of scalability for large-scale and low-cost production of these nanoarchitectures limits impact. This Scalable NanoManufacturing (SNM) research program will provide disruptive manufacturing solutions to create nanoarchitectures embedded in micron scale surface to foster a breakthrough in scalable fabrication. The investigators will work closely with an industrial advisory board to tailor research that addresses scientific studies to the benefit of a broad range of technology sectors that includes medical and industrial diagnostic systems to optical communications as well as the precision manufacturing equipment needed to achieve the goal of scalable nanomanufacturing. The research program is closely integrated with a diverse educational plan and robust industry outreach that is designed to train students (high school to graduate level, STEM educators/learners and industry practitioners) to be future leaders in science and technology to benefit innovation and strengthen manufacturing in the United States. This plan includes creation of movies and demonstrations in collaboration with the UC Irvine School of Education "From Lab to Lesson Plan" that train high school teachers from the Mathematics Engineering Science Achievement (MESA) program serving underrepresented students in Science, Technology, Engineering, and Math (STEM). Undergraduate students will be recruited from The Louis Stokes for Minority Participation in STEM, a statewide initiative funded by the National Science Foundation, to train a diverse group of students in advanced research activities. Interdisciplinary training will be provided for graduate students involving fundamental science and engineering as well as technological applications and scientific communication.Synergistic experimental and theoretical studies involve understanding driving forces that direct assembly of nanoparticles from colloidal solution into predefined surface patterns, physical mechanisms of direct writing of periodic and aperiodic nanowire arrangements using elecromechanical spinning technology, and needed precision in process control. These studies when integrated with existing lithographic techniques will produce multi-length scale complex architectures using high throughput manufacturing methods that afford tunable properties at infrared and optical frequencies while retaining low cost. Test bed applications of these systems include sensors exhibiting low detection limits over large areas, non-linear optical devices, and optical antennas and actuators to demonstrate the benefit to technological applications. Advancements to the research field will be threefold: 1) studies of fundamental mechanisms in nanofabrication will allow researchers to conceive new and robust nanofabrication methods that will benefit research beyond optics, 2) the understanding of defect tolerance in the development of optically responsive surfaces and optomechanical systems will provide guidelines for geometric tolerances in nanomanufacturing, and 3) new insights into the physical mechanism of multi-length scale electromagnetic interactions will improve understanding of novel light-matter interactions and produce improved functionalities for future optical devices.
在表面上排列的纳米构造具有次波长大小的金属构建块,可操纵轻质物质相互作用。这些纳米工程材料基本上为控制光的新设计方式奠定了基础,并为新型功能设备铺平了道路,而传统的光学元件则使应用程序不可能受益,从而使应用程序受益,包括传感,能量,成像和光指导。然而,这些纳米结构限制的大规模和低成本产生的可伸缩性限制了。该可扩展的纳米制造(SNM)研究计划将提供破坏性的制造解决方案,以创建嵌入微米尺度表面的纳米结构,以促进可扩展制造的突破。 调查人员将与一个工业咨询委员会紧密合作,以量身定制研究,该研究涉及科学研究,从而使广泛的技术领域受益,其中包括医疗和工业诊断系统用于光学通信以及实现可扩展纳米制造的目标所需的精确制造设备。 该研究计划与多样化的教育计划和强大的行业宣传密切相结合,该计划旨在培训学生(高中至研究生水平,STEM教育者/学习者和行业从业人员),以成为科学和技术领域的未来领导者,以使美国的创新和增强制造业。该计划包括与UC Irvine教育学院“从实验室到课程计划”合作创作电影和演示,该计划培训了数学工程科学成就(MESA)计划的高中教师,为科学,技术,工程,工程和数学(STEM)服务不足的学生提供服务不足的学生。本科生将从路易斯·斯托克斯(Louis Stokes)招募,以少数群体参与STEM,这是由国家科学基金会资助的全州倡议,以培训一群从事高级研究活动的学生。将为涉及基础科学和工程以及技术应用以及科学交流的研究生提供跨学科培训。策划实验和理论研究涉及了解驱动力,这些驱动力将纳米粒子从胶体解决方案中直接组装为预先定义的表面模式中,以定期编写的纳米式和纳米式的机制及其技术的机制和机制的机制和机制的机制和机制且依次依赖于机制。这些研究与现有光刻技术集成时,将使用高吞吐量制造方法产生多长度尺度的复杂体系结构,这些方法可在红外和光学频率下提供可调性,同时保持低成本。这些系统的测试床应用包括在大面积上表现出低检测限的传感器,非线性光学设备以及光天线和执行器,以证明对技术应用的好处。 研究领域的进步将是三个方面:1)纳米纳法制作中的基本机制的研究将使研究人员能够怀孕新颖而强大多长度尺度的电磁相互作用将改善对新型光线相互作用的理解,并为未来的光学设备产生改善的功能。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Learning Analysis of Vibrational Spectra of Bacterial Lysate for Rapid Antimicrobial Susceptibility Testing
- DOI:10.1021/acsnano.0c05693
- 发表时间:2020-11-24
- 期刊:
- 影响因子:17.1
- 作者:Thrift, William John;Ronaghi, Sasha;Ragan, Regina
- 通讯作者:Ragan, Regina
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Regina Ragan其他文献
First principles studies of adsorption of Pd, Ag, Pt, and Au on yttrium disilicide nanowires
- DOI:
10.1016/j.cplett.2008.02.040 - 发表时间:
2008-03-20 - 期刊:
- 影响因子:
- 作者:
Chulsu Jo;Juexian Cao;Aniketa Shinde;Regina Ragan;Ruqian Wu - 通讯作者:
Ruqian Wu
Determination of preferential rare earth adatom adsorption geometries on Si(001)
- DOI:
10.1016/j.physleta.2009.07.064 - 发表时间:
2009-09-14 - 期刊:
- 影响因子:
- 作者:
Aniketa Shinde;Juexian Cao;Wenjie Ouyang;Ruqian Wu;Regina Ragan - 通讯作者:
Regina Ragan
Nanoantennas report dissipative assembly in oscillatory electric fields.
纳米天线报告了振荡电场中的耗散组装。
- DOI:
10.1016/j.jcis.2024.03.203 - 发表时间:
2024 - 期刊:
- 影响因子:9.9
- 作者:
Hongrei Wei;Héctor Pascual;Serxho Selmani;Sebastian Marroquin;Gabriel D. Reginato;Zhibin Guan;Regina Ragan - 通讯作者:
Regina Ragan
Platinum passivation of self-assembled erbium disilicide nanowire arrays on Si(001)
Si(001)上自组装二硅化铒纳米线阵列的铂钝化
- DOI:
10.1007/s00339-004-3162-4 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Regina Ragan;Regina Ragan;Seung Joong Kim;Xuema Li;R. S. Williams - 通讯作者:
R. S. Williams
Regina Ragan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Regina Ragan', 18)}}的其他基金
A Next-Generation Sensing Platform for Bacterial Metabolomics
下一代细菌代谢组学传感平台
- 批准号:
1926612 - 财政年份:2019
- 资助金额:
$ 129.77万 - 项目类别:
Standard Grant
I-Corps: High-sensitivity, optical, universal nanodetection system
I-Corps:高灵敏度、光学、通用纳米检测系统
- 批准号:
1449745 - 财政年份:2014
- 资助金额:
$ 129.77万 - 项目类别:
Standard Grant
Self-Organized Metal Nanoarchitectures for Planar Plasmonics
用于平面等离子体的自组织金属纳米结构
- 批准号:
1101074 - 财政年份:2011
- 资助金额:
$ 129.77万 - 项目类别:
Standard Grant
CAREER: A fundamental study of biological/inorganic interfaces: Understanding mechanisms for probing biomolecular interactions using nanostructures
职业:生物/无机界面的基础研究:了解使用纳米结构探测生物分子相互作用的机制
- 批准号:
0748912 - 财政年份:2008
- 资助金额:
$ 129.77万 - 项目类别:
Continuing Grant
Fabrication and Optimization of Highly Ordered Assemblies of Metallic Nanowire and Nanoparticle Arrays
金属纳米线和纳米颗粒阵列高度有序组件的制造和优化
- 批准号:
0731349 - 财政年份:2007
- 资助金额:
$ 129.77万 - 项目类别:
Continuing Grant
NER: Biomimetic Platform for Probing Efficacy of Antimicrobial Agents
NER:用于探测抗菌剂功效的仿生平台
- 批准号:
0709481 - 财政年份:2007
- 资助金额:
$ 129.77万 - 项目类别:
Standard Grant
SGER: Fabrication and Optimization of Highly Ordered Assemblies of Metallic Nanowire and Nanocrystal Arrays
SGER:金属纳米线和纳米晶体阵列高度有序组件的制造和优化
- 批准号:
0642217 - 财政年份:2006
- 资助金额:
$ 129.77万 - 项目类别:
Standard Grant
相似国自然基金
面向智能网卡的可扩展FPGA包分类技术研究
- 批准号:62372123
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向高并发软件的可扩展建模与分析技术研究
- 批准号:62302375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
- 批准号:62376131
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
包含时空维度的可扩展光MIMO解调芯片与均衡器
- 批准号:62335019
- 批准年份:2023
- 资助金额:225.00 万元
- 项目类别:重点项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
- 批准号:62371039
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
SNM: Manufacturing Autonomy for Directed Evolution of Materials (MADE-Materials) for Robust, Scalable Nanomanufacturing
SNM:材料定向进化(MADE-Materials)的制造自主权,实现稳健、可扩展的纳米制造
- 批准号:
1727894 - 财政年份:2017
- 资助金额:
$ 129.77万 - 项目类别:
Standard Grant
SNM: Scalable Nanomanufacturing of Fab Compatible High-Density Nanowire Arrays for High-Throughput Drug Screening
SNM:用于高通量药物筛选的可扩展纳米制造兼容工厂的高密度纳米线阵列
- 批准号:
1728497 - 财政年份:2017
- 资助金额:
$ 129.77万 - 项目类别:
Standard Grant
SNM: Scalable Nanomanufacturing of Carbon Nanotube Sheet Wrapped Carbon Fibers for Low Density and High Strength Composites
SNM:用于低密度和高强度复合材料的碳纳米管片包裹碳纤维的可扩展纳米制造
- 批准号:
1636306 - 财政年份:2017
- 资助金额:
$ 129.77万 - 项目类别:
Standard Grant
SNM: High-Throughput Scalable Nanomanufacturing of High-Performance Organic Devices
SNM:高性能有机器件的高通量可扩展纳米制造
- 批准号:
1636385 - 财政年份:2016
- 资助金额:
$ 129.77万 - 项目类别:
Standard Grant
SNM: Scalable Nanomanufacturing of 2D Electronic Materials and Devices Using Automated Exfoliation
SNM:使用自动剥离的二维电子材料和设备的可扩展纳米制造
- 批准号:
1636256 - 财政年份:2016
- 资助金额:
$ 129.77万 - 项目类别:
Standard Grant