Platform Nanoscale Sorbents for Advanced Separation and Recovery of Metals and Metalloids in Water

用于高级分离和回收水中金属和类金属的纳米级吸附剂平台

基本信息

  • 批准号:
    1437820
  • 负责人:
  • 金额:
    $ 32.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

1437820FortnerPlatform Nanoscale Sorbents for Advanced Separation and Recovery of Metals and Metalloids in WaterThis project will benefit society by providing information that can enable a new approach to adsorptive removal of metals in drinking water. The project is focused on improved treatment of three contaminants, arsenic, uranium and chromium, which are of current interest both within the United States and internationally. Newly created information on magnetic iron oxide sorbents will not only enable their integration into sorption treatment technologies, but it will also benefit other particle-based environmental technologies related to sensing, imaging, and remediation. Systematic evaluation of sorbent regeneration and the properties of the residual solids will contribute to the life cycle assessments of processes that use new sorbents. The research plan will help train the future science and technology workforce through the involvement of high school, undergraduate, and Ph.D. students. In all educational activities, programs will be used to promote increased participation of underrepresented minorities.The project will investigate a potentially transformative new approach to preparing tailored sorbent media for removal of metal and metalloids from drinking water. The platform approach uses engineered iron oxide nanoparticles with high surface areas and affinities for metal adsorption that can be controlled with respect to their aggregation and deposition on substrate supports. The project will advance scientific understanding of metal adsorption of arsenic, uranium and chromium to a novel set of engineered nanoparticles and the factors that control the properties of the nanoparticles and their interactions with supporting media. The project objectives are to: (1) develop model libraries of engineered iron oxide nanoparticles with controlled size, composition, and aqueous stabilities; (2) quantify the adsorption affinity and capacity of the new sorbents and elucidate adsorption mechanisms; (3) evaluate the performance and regeneration potential of sorbent media in realistic treatment configurations. The PIs will pursue these objectives through three integrated tasks. Task 1 they will develop a library of iron oxide nanoparticles with a range of surface coatings and particle sizes, and then characterize the stability of particle suspensions and their deposition to substrate media. Task 2 is a detailed investigation of the adsorption of arsenic, chromium, and uranium to the nanoparticles that will combine batch adsorption experiments, spectroscopic characterization of adsorbed metals, and surface complexation modeling of adsorption. Task 3 will evaluate the performance and regeneration of substrate-supported sorbent materials in continuous-flow column experiments. The research approach will be closely linked with education and outreach activities at their university and in their community.
1437820用于高级分离和回收水中金属和类金属的FortnerPlatform纳米吸附剂该项目将通过提供信息来实现饮用水中金属吸附去除的新方法,从而造福社会。该项目的重点是改善砷、铀和铬三种污染物的处理,这三种污染物目前在美国和国际上都引起了关注。关于磁性氧化铁吸附剂的新信息不仅使其能够集成到吸附处理技术中,而且还将有利于与传感、成像和修复相关的其他基于颗粒的环境技术。吸附剂再生和残留固体特性的系统评估将有助于对使用新吸附剂的工艺进行生命周期评估。该研究计划将通过高中生、本科生和博士生的参与,帮助培训未来的科技人才。学生。在所有教育活动中,项目将用于促进代表性不足的少数群体的更多参与。该项目将研究一种潜在的变革性新方法,以制备定制的吸附剂介质,以去除饮用水中的金属和类金属。该平台方法使用具有高表面积和金属吸附亲和力的工程氧化铁纳米颗粒,可以控制它们在基材支架上的聚集和沉积。该项目将促进对一组新型工程纳米粒子对砷、铀和铬的金属吸附以及控制纳米粒子特性及其与支持介质相互作用的因素的科学理解。该项目的目标是:(1)开发具有受控尺寸、组成和水稳定性的工程氧化铁纳米颗粒模型库; (2)量化新型吸附剂的吸附亲和力和容量并阐明吸附机制; (3) 评估实际处理配置中吸附剂介质的性能和再生潜力。 PI 将通过三项综合任务来实现这些目标。 任务 1 他们将开发一个具有一系列表面涂层和粒径的氧化铁纳米颗粒库,然后表征颗粒悬浮液的稳定性及其在基材介质上的沉积。任务 2 详细研究了砷、铬和铀对纳米粒子的吸附,其中结合了批量吸附实验、吸附金属的光谱表征和吸附的表面络合建模。任务 3 将评估连续流动柱实验中基质支撑的吸附剂材料的性能和再生。研究方法将与大学和社区的教育和外展活动密切相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Fortner其他文献

Elucidating the Role of Sulfide on the Stability of Ferrihydrite Colloids under Anoxic Conditions
阐明缺氧条件下硫化物对水铁矿胶体稳定性的作用
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Leiyu He;Lin Xie;Dengjun Wang;Wenlu Li;John Fortner;qianqian Li;Yanhua Duan;Zhenqing Shi;Peng Liao;Chongxuan Liu
  • 通讯作者:
    Chongxuan Liu
Formation and Stability of NOM-Mn(III) Colloids in Aquatic Environments
NOM-Mn(III) 胶体在水生环境中的形成和稳定性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Qianqian Li;Lin Xie;Yi Jiang;John Fortner;Kai Yu;Peng Liao;Chongxuan Liu
  • 通讯作者:
    Chongxuan Liu
Surface hydrophobicity of boron nitride promotes PFOA photocatalytic degradation
氮化硼的表面疏水性促进PFOA光催化降解
  • DOI:
    10.1016/j.cej.2024.149134
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Bo Wang;Yu Chen;Joshua C. Samba;Kimberly N Heck;Xiaochuan Huang;Junseok Lee;Jordin Metz;Manav Bhati;John Fortner;Qilin Li;Paul Westerhoff;Pedro J. J. Alvarez;T. Senftle;Michael S. Wong
  • 通讯作者:
    Michael S. Wong
Crumpled reduced graphene oxide–amine–titanium dioxide nanocomposites for simultaneous carbon dioxide adsorption and photoreduction
  • DOI:
    10.1039/c6cy00828c
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Yao Nie;Wei-Ning Wang;Yi Jiang;John Fortner;Pratim Biswas
  • 通讯作者:
    Pratim Biswas
Arsenic Removal by Nanoscale Magnetite in Guanajuato, Mexico
墨西哥瓜纳华托的纳米磁铁矿除砷
  • DOI:
    10.1089/ees.2013.0425
  • 发表时间:
    2014-07-15
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Jesse Walter Farrell;John Fortner;Sarah Work;Carolina Avendano;N. Gonzalez;Rafael Zárate Araiza;Qilin Li;Pedro J. J. Álvarez;Vicki Colvin;Amy Kan;M. Tomson
  • 通讯作者:
    M. Tomson

John Fortner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Fortner', 18)}}的其他基金

Conference: 2023 Environmental Nanotechnology GRC and GRS Nanotechnology for a More Sustainable World
会议:2023年环境纳米技术GRC和GRS纳米技术促进更可持续的世界
  • 批准号:
    2329640
  • 财政年份:
    2023
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Standard Grant
UNS: Collaborative Research: Effects of Nano-Bio Interactions on Nanoparticle Fate and Transport in Porous Media
UNS:合作研究:纳米生物相互作用对多孔介质中纳米颗粒命运和传输的影响
  • 批准号:
    1704326
  • 财政年份:
    2017
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Standard Grant
CAREER: Development and Application of Crumpled Graphene Oxide-Based Nanocomposites as a Platform Material for Advanced Water Treatment
职业:褶皱氧化石墨烯基纳米复合材料作为高级水处理平台材料的开发和应用
  • 批准号:
    1454656
  • 财政年份:
    2015
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an X-ray/Ultraviolet Photoelectron Spectrometer (XPS/UPS)
MRI:获取 X 射线/紫外光电子能谱仪 (XPS/UPS)
  • 批准号:
    1337374
  • 财政年份:
    2013
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Standard Grant
Atmospheric Fullerene Chemistry: Elucidating Oxidative Pathways and Characterization of Corresponding Derivatives
大气富勒烯化学:阐明氧化途径和相应衍生物的表征
  • 批准号:
    1236865
  • 财政年份:
    2012
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Standard Grant

相似国自然基金

基于亚纳米级高速摩擦抛光下的金刚石亚表面跨尺度损伤演变与控制机制
  • 批准号:
    52302036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单粒子效应对基于纳米级异构多核SoC的卷积神经网络系统影响机理研究
  • 批准号:
    12305303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米级相变薄膜的反常结晶动力学行为及其存储器件特性研究
  • 批准号:
    62374096
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
肿瘤细胞纳米级凋亡小体诱导获得性胸腺耐受效应的作用与机制研究
  • 批准号:
    32300576
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于酶-纳米级联循环反应的微创左旋多巴生物传感器的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:

相似海外基金

CAREER: Engineering Chiral Nanoscale Interactions to Enhance Nanomaterial Transport and Uptake in Tissue and at Biointerfaces
职业:工程手性纳米级相互作用以增强组织和生物界面中纳米材料的运输和吸收
  • 批准号:
    2337387
  • 财政年份:
    2024
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Continuing Grant
CAREER: Nanoscale Resolution of Near-Interface Crystallization in Multicomponent Semicrystalline Polymeric Materials
职业:多组分半晶聚合物材料中近界面结晶的纳米级分辨率
  • 批准号:
    2338613
  • 财政年份:
    2024
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Continuing Grant
CAREER: Understanding and controlling the sintering of metal powders with nanoscale additives
职业:了解和控制纳米级添加剂金属粉末的烧结
  • 批准号:
    2340688
  • 财政年份:
    2024
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Continuing Grant
Single-atom quantum phenomena in nanoscale semiconductor devices
纳米级半导体器件中的单原子量子现象
  • 批准号:
    EP/V048333/2
  • 财政年份:
    2024
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Research Grant
Quantum microscopy facility for ultrasensitive nanoscale magnetic imaging
用于超灵敏纳米级磁成像的量子显微镜设备
  • 批准号:
    LE240100092
  • 财政年份:
    2024
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了