CAREER: Nanoscale Resolution of Near-Interface Crystallization in Multicomponent Semicrystalline Polymeric Materials

职业:多组分半晶聚合物材料中近界面结晶的纳米级分辨率

基本信息

  • 批准号:
    2338613
  • 负责人:
  • 金额:
    $ 64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-09-01 至 2029-08-31
  • 项目状态:
    未结题

项目摘要

PART 1: NON-TECHNICAL SUMMARYSemicrystalline polymers comprise ~70% of all synthetic plastics, and they are pervasive in daily life in packaging, transportation, and high-technology applications like microelectronics. Semicrystalline polymers are often used in the form of multicomponent polymeric materials, e.g., multilayer polyethylene/poly(ethylene terephthalate) films for packaging and carbon fiber-reinforced composites for transportation. A key feature of these multicomponent materials is the presence of a large quantity of polymer/polymer or polymer/filler interfaces. Understanding the effects of these interfaces on polymer crystallization is essential to the predictive design of multicomponent materials with desired crystalline structures and properties. Unfortunately, such a fundamental understanding is lacking. This project will work toward closing the fundamental knowledge gap in interfacial effects and polymer crystallization, using a new fluorescence technique with a nanoscale spatial resolution. The fundamental knowledge gained from this research will advance the development of new multicomponent materials with optimized crystalline structures and properties, which can contribute to a broad range of applications such as food packaging and biomedical devices. This project will provide an integrated research and educational experience for graduate students, undergraduate students, and high-school students, including members of underserved groups. The principal investigator and students will also develop education-oriented online videos and hands-on demonstrations to engage the general public and attract K-12 students into STEM fields. PART 2: TECHNICAL SUMMARYThis project’s research goal is to advance fundamental understanding of the interfacial effects on crystallization in multicomponent semicrystalline polymers, using a new fluorescence technique with a nanoscale spatial resolution. The principal investigator (PI) plans to achieve this goal by strategically placing trace amounts of “reporter” (i.e., crystal-sensing) fluorescent dye labels at controlled distances from interfaces to elicit fluorescence-based information about local crystallization and thus interfacial effects. Towards this goal, the PI and students will pursue three research thrusts: (1) Understand the role of fluorescence as a crystallization-sensing mechanism by selectively placing the dyes in rigid vs. mobile amorphous fraction regions to deconvolute their contributions to the overall fluorescence; (2) Study near-interface crystallization by location-specific fluorescence and complementary methods such as grazing-incidence X-ray scattering; (3) Unveil polymer/polymer and polymer/substrate interfacial effects on crystallization and their perturbation length-scale. Material studies will focus on degradable poly(L-lactic acid) (PLLA) as a model semicrystalline polymer to advance the design of new PLLA-based multicomponent materials with desired structures/properties and improved sustainability, including multilayer films, composites, blends, and block copolymers. The education/outreach plan will broaden the reach and benefits of this CAREER research at multiple levels: (1) The PI and students will reach out to the general public through online educational videos on semicrystalline polymers; (2) The PI will develop a new lab module on plastic packaging and leverage the existing research programs at ASU to train graduate students, undergraduate students, and high-school students on polymer synthesis and characterization; (3) The PI and students will develop hands-on demonstrations at ASU Open Door to stimulate local K-12 students’ interest in polymers and STEM careers..This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第 1 部分:非技术摘要半结晶聚合物约占所有合成塑料的 70%,它们在日常生活中的包装、运输和微电子等高科技应用中普遍存在。例如,用于包装的多层聚乙烯/聚对苯二甲酸乙二醇酯薄膜和用于制造的碳纤维增强复合材料这些多组分材料的一个关键特征是存在大量聚合物/聚合物或聚合物/填料界面,了解这些界面对聚合物结晶的影响对于具有所需晶体结构和性能的多组分材料的预测设计至关重要。不幸的是,缺乏这样的基本理解,该项目将致力于使用具有纳米级空间分辨率的新荧光技术来缩小界面效应和聚合物结晶的基础知识差距,从这项研究中获得的基础知识将推动发展。具有优化晶体结构和性能的新型多组分材料,可促进食品包装和生物医学设备等广泛应用,该项目将为研究生、本科生和高中生提供综合的研究和教育体验。 ,包括服务不足群体的成员。首席研究员和学生还将开发面向公众的在线视频和实践演示,并吸引 K-12 学生进入 STEM 领域。为了加深对多组分半晶聚合物结晶界面效应的基本了解,首席研究员 (PI) 计划通过策略性地放置痕量“报告分子”(即晶体)来实现这一目标。 -传感)荧光染料标记在距界面的受控距离处,以获取有关局部结晶的基于荧光的信息,从而获得界面效应。为了实现这一目标,PI和学生将进行三项研究。推力:(1)通过选择性地将染料放置在刚性和移动的无定形部分区域来了解荧光作为结晶传感机制的作用,以解卷积它们对整体荧光的贡献;(2)通过特定位置研究近界面结晶。荧光和掠入射 X 射线散射等补充方法;(3) 揭示聚合物/聚合物和聚合物/基材界面对结晶及其扰动长度尺度的影响。材料研究将重点关注可降解聚(L-乳酸)(PLLA)作为半结晶聚合物模型,以推进具有所需结构/性能和改进可持续性的新型 PLLA 基多组分材料的设计,包括多层薄膜、复合材料、共混物和教育/推广计划将在多个层面上扩大这项职业研究的范围和效益:(1) PI 和学生将通过在线教育视频向公众宣传。 (2) PI 将开发一个新的塑料包装实验室模块,并利用亚利桑那州立大学现有的研究项目对研究生、本科生和高中生进行聚合物合成和表征方面的培训;学生将在 ASU Open Door 上进行实践演示,以激发当地 K-12 学生对聚合物和 STEM 职业的兴趣。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和知识进行评估,被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kailong Jin其他文献

EIT-like effect and mode inversion in stacked metamaterials based on bright-bright mode coupling
基于亮-亮模式耦合的堆叠超材料中的类 EIT 效应和模式反转
  • DOI:
    10.1016/j.ijleo.2022.168908
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Weimeng Luan;Yihao Zhang;Xiaona Yan;Xinzhuo Gao;Kailong Jin;Zuanming Jin;Guohong Ma
  • 通讯作者:
    Guohong Ma
Controlling terahertz radiation with subwavelength blocky patterned CoFeB/Pt heterostructures
用亚波长块状图案化 CoFeB/Pt 异质结构控制太赫兹辐射
  • DOI:
    10.7567/1882-0786/ab4d2b
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Bangju Song;Yuna Song;Shunnong Zhang;Kailong Jin;Weihua Zhu;Qin Li;Zongzhi Zhang;Xian Lin;Ye Dai;Xiaona Yan;Guohong Ma;Zuanming Jin;Jianquan Yao
  • 通讯作者:
    Jianquan Yao
Enhanced Tg-Confinement Effect in Cross-Linked Polystyrene Compared to Its Linear Precursor: Roles of Fragility and Chain Architecture
与线性前体相比,交联聚苯乙烯的 Tg 限制效应增强:脆性和链结构的作用
  • DOI:
    10.1021/acs.macromol.6b01042
  • 发表时间:
    2016-07-08
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Kailong Jin;J. Torkelson
  • 通讯作者:
    J. Torkelson
Bulk physical aging behavior of cross-linked polystyrene compared to its linear precursor: Effects of cross-linking and aging temperature
交联聚苯乙烯与其线性前体相比的整体物理老化行为:交联和老化温度的影响
  • DOI:
    10.1016/j.polymer.2017.03.045
  • 发表时间:
    2017-04-21
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Kailong Jin;Lingqiao Li;J. Torkelson
  • 通讯作者:
    J. Torkelson
Mechanically Robust and Recyclable Cross-Linked Fibers from Melt Blown Anthracene-Functionalized Commodity Polymers.
由熔喷蒽官能化商品聚合物制成的机械坚固且可回收的交联纤维。
  • DOI:
    10.1021/acsami.9b00209
  • 发表时间:
    2019-03-07
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Kailong Jin;Aditya Banerji;D. Kitto;F. Bates;Christopher J. Ellison
  • 通讯作者:
    Christopher J. Ellison

Kailong Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kailong Jin', 18)}}的其他基金

Scalable Synthesis of Ultrathin 2D Covalent Organic Framework Membranes with Sub-1 nm Pores for Molecular Separations
用于分子分离的具有亚 1 nm 孔径的超薄 2D 共价有机框架膜的可扩展合成
  • 批准号:
    2216843
  • 财政年份:
    2022
  • 资助金额:
    $ 64万
  • 项目类别:
    Standard Grant

相似国自然基金

基于亚纳米级高速摩擦抛光下的金刚石亚表面跨尺度损伤演变与控制机制
  • 批准号:
    52302036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单粒子效应对基于纳米级异构多核SoC的卷积神经网络系统影响机理研究
  • 批准号:
    12305303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米级相变薄膜的反常结晶动力学行为及其存储器件特性研究
  • 批准号:
    62374096
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
肿瘤细胞纳米级凋亡小体诱导获得性胸腺耐受效应的作用与机制研究
  • 批准号:
    32300576
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
BMP2介导人毛囊干细胞纳米级仿生微环境的构建及相关机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Elucidating the dynamic role of PTPsigma in synaptic nano-organization and NMDA receptor function
阐明 PTPsigma 在突触纳米组织和 NMDA 受体功能中的动态作用
  • 批准号:
    10606077
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
Indiana University Bloomington (IUB) Center for Cannabis, Cannabinoids, and Addiction (C3A)
印第安纳大学伯明顿分校 (IUB) 大麻、大麻素和成瘾中心 (C3A)
  • 批准号:
    10713089
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
High-throughput closed-loop direct aberration sensing and correction for multiphoton imaging in live animals
用于活体动物多光子成像的高通量闭环直接像差传感和校正
  • 批准号:
    10572572
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
Monitor single-cell dynamics using optically computed phase microscopy in correlation with fluorescence characterization of intracellular properties
使用光学计算相位显微镜监测单细胞动力学与细胞内特性的荧光表征相关
  • 批准号:
    10589414
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
Mechanisms underlying centriole morphogenesis
中心粒形态发生的机制
  • 批准号:
    10549843
  • 财政年份:
    2022
  • 资助金额:
    $ 64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了