III: Small: Enabling the Best Utilization of GPUs for In-Memory Data Management Systems
III:小型:为内存数据管理系统实现 GPU 的最佳利用
基本信息
- 批准号:1718450
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The continuously increasing demand for fast and real-time data analytics requires that in-memory database systems provide both high-performance transaction processing and low-latency query response time. To accomplish these two goals is a highly challenging task as multiple workloads are co-run on conventional CPU/multicores due to different workload characteristics and different quality of service requirements. The rise of general-purpose graphical processing units (GPU) brings a decoupling opportunity of maximizing query execution performance while minimizing interference to transaction processing. However, best utilization of such a hardware device in database systems must effectively address several mismatches between the parallel computing-oriented architecture of GPU and the data processing-oriented database query workloads. This project seeks a solution of building a GPU-based query execution engine and offers in-memory database systems as an unprecedented opportunity and capability to execute both transaction workloads and analytics workloads in a high-performance and low-cost way. This project attempts to make a high broader impact by transforming basic research results into practical database systems, and by training both undergraduate and graduate students with research activities, and by timely introducing new research results into classrooms.Specifically, the project will address three mismatching issues, including (1) the one between high parallel computing power in GPU and slow data transfer speeds from/to main memory; (2) the one between GPU's limited programming capabilities and database query's complex structures; and (3) the one between the availability of massive parallel processing cores and the lack of system software support for concurrent task executions and memory management. This project will apply a holistic system design methodology to cohesively address these challenges by carrying out several closely related research tasks. (1) The project team will develop a software translation framework with multi-level abstractions and optimizations to automatically translate Structured Query Language queries into highly-efficient programs running on GPUs. (2) The team will develop query execution cost models by considering GPU performance factors to support query optimization and dynamic re-optimization. (3) The team will design specific algorithms and query execution techniques to efficiently handle two complex but practically important queries, namely nested sub-queries and recursive queries. (4) The team will build a software layer for system-level device memory management and dynamic query scheduling. (5) A final task will be to integrate the project outcome into representative open source in-memory systems with comprehensive workloads. The research efforts in this project will be open source.
对快速和实时数据分析的需求不断增加,要求内存数据库系统同时提供高性能交易处理和低延迟查询响应时间。实现这两个目标是一项极具挑战性的任务,因为由于不同的工作负载特征和服务质量不同,多个工作负载是在常规CPU/Multicores上共同运行的。通用图形处理单元(GPU)的兴起带来了最大化查询执行性能的脱钩机会,同时最大程度地减少了对交易处理的干扰。但是,数据库系统中这种硬件设备的最佳利用必须有效地解决GPU的并行计算架构与以数据处理为导向的数据库查询工作负载之间的几个不匹配。该项目寻求一种解决基于GPU的查询执行引擎的解决方案,并提供内存数据库系统,作为前所未有的机会和能力,以高性能和低成本方式执行交易工作负载和分析工作负载。 This project attempts to make a high broader impact by transforming basic research results into practical database systems, and by training both undergraduate and graduate students with research activities, and by timely introducing new research results into classrooms.Specifically, the project will address three mismatching issues, including (1) the one between high parallel computing power in GPU and slow data transfer speeds from/to main memory; (2)GPU有限的编程功能和数据库查询的复杂结构之间的一个; (3)大规模并行处理核心的可用性与缺乏同时执行任务执行和内存管理的系统软件支持之间。该项目将通过执行几项密切相关的研究任务,应用整体系统设计方法来凝聚力解决这些挑战。 (1)项目团队将开发一个具有多级抽象和优化的软件翻译框架,以自动将结构化查询语言查询转换为在GPU上运行的高效程序。 (2)团队将通过考虑支持查询优化和动态重优化的GPU性能因素来开发查询执行成本模型。 (3)团队将设计特定的算法和查询执行技术,以有效处理两个复杂但实际上重要的查询,即嵌套的子查询和递归查询。 (4)团队将构建一个软件层,用于系统级设备内存管理和动态查询计划。 (5)最后一项任务是将项目结果与全面的工作负载相结合到代表性开源内存中。该项目的研究工作将是开源的。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automating Incremental and Asynchronous Evaluation for Recursive Aggregate Data Processing
- DOI:10.1145/3318464.3389712
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Qiange Wang;Yanfeng Zhang;Hao Wang;Liang Geng;Rubao Lee;Xiaodong Zhang;Ge Yu
- 通讯作者:Qiange Wang;Yanfeng Zhang;Hao Wang;Liang Geng;Rubao Lee;Xiaodong Zhang;Ge Yu
Catfish: Adaptive RDMA-enabled R-Tree for Low Latency and High Throughput
- DOI:10.1109/icdcs.2019.00025
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Mengbai Xiao;Hao Wang;Liang Geng;Rubao Lee;Xiaodong Zhang
- 通讯作者:Mengbai Xiao;Hao Wang;Liang Geng;Rubao Lee;Xiaodong Zhang
NeutronStar: Distributed GNN Training with Hybrid Dependency Management
- DOI:10.1145/3514221.3526134
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Qiange Wang;Yanfeng Zhang;Hao Wang;Chao Chen;Xiaodong Zhang;Geoffrey X. Yu
- 通讯作者:Qiange Wang;Yanfeng Zhang;Hao Wang;Chao Chen;Xiaodong Zhang;Geoffrey X. Yu
HYPHA: a framework based on separation of parallelism to accelerate persistent homology matrix reduction
HYPHA:基于并行分离加速持久同源矩阵约简的框架
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Simon Zhang, Mengbai Xiao
- 通讯作者:Simon Zhang, Mengbai Xiao
Mixer: Efficiently Understanding and Retrieving Visual Content at Web-Scale
- DOI:10.14778/3476311.3476371
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Mengbai Xiao;An Qin;Yongwei Wu;Xinjie Huang;Xiaodong Zhang
- 通讯作者:Mengbai Xiao;An Qin;Yongwei Wu;Xinjie Huang;Xiaodong Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaodong Zhang其他文献
Surface morphology and kerf quality during fiber laser cutting of high volume fraction SiC particles-reinforced aluminum matrix composites
高体积分数SiC颗粒增强铝基复合材料光纤激光切割过程中的表面形貌和切口质量
- DOI:
10.1007/s11665-022-07526-5 - 发表时间:
2022 - 期刊:
- 影响因子:2.3
- 作者:
Xiaodong Zhang;Hui Zhou;Bowen Zhou;Rong Wang;Haobo Han;Xiaoyang Jiang;Maojun Li - 通讯作者:
Maojun Li
Neotypification and phylogeny of Kalmusia
卡尔穆西亚的新型化和系统发育
- DOI:
10.11646/phytotaxa.176.1.16 - 发表时间:
2014-08 - 期刊:
- 影响因子:1.1
- 作者:
Ying Zhang;Jiaqi Zhang;Zhaodi Wang;Jacques Fourner;Pedro W. Crous;Xiaodong Zhang;Wenjing Li;Hiran A. Ariyawansa;Kevin D. Hyde - 通讯作者:
Kevin D. Hyde
Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions
双离子顺序注入SiO2中CuZn合金纳米粒子的合成、热演化及光学性能
- DOI:
10.1016/j.jallcom.2012.09.099 - 发表时间:
2013-02 - 期刊:
- 影响因子:6.2
- 作者:
Lihong Zhang;Xiaodong Zhang;Yanyan Shen;Changlong Liu - 通讯作者:
Changlong Liu
Molecular dynamics investigation of thermo-physical properties and hydrogen-bonds of 1-ethyl-3-methylimidazolium dimethylphosphate-water system
1-乙基-3-甲基咪唑二甲基磷酸盐-水体系热物理性质和氢键的分子动力学研究
- DOI:
10.1016/j.molliq.2017.04.031 - 发表时间:
2017-07 - 期刊:
- 影响因子:6
- 作者:
Tianyu Li;Zongchang Zhao;Xiaodong Zhang - 通讯作者:
Xiaodong Zhang
The comparison of EPC count and function in the situation of vascular repair at early and late stage
血管早期与晚期修复情况EPC数量及功能比较
- DOI:
10.1007/s11239-012-0851-2 - 发表时间:
2013 - 期刊:
- 影响因子:4
- 作者:
G. He;Hongmei Zhang;Xiaodong Zhang;Ding Li;Yanjun Zeng - 通讯作者:
Yanjun Zeng
Xiaodong Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaodong Zhang', 18)}}的其他基金
Understanding the molecular basis of checkpoint response during DNA double-strand break repair
了解 DNA 双链断裂修复过程中检查点反应的分子基础
- 批准号:
MR/Y001192/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Collaborative Research: SHF: Medium: Hardware and Software Support for Memory-Centric Computing Systems
协作研究:SHF:中:以内存为中心的计算系统的硬件和软件支持
- 批准号:
2312507 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Elements: Sustained Innovation and Service by a GPU-accelerated Computation Tool for Applications of Topological Data Analysis
要素:GPU加速计算工具在拓扑数据分析应用中的持续创新和服务
- 批准号:
2310510 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A New Direction of Research and Development to Fulfill the Promise of Computational Storage
合作研究:SHF:Medium:实现计算存储承诺的研发新方向
- 批准号:
2210753 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Travel: Travel Support for The 42nd IEEE International Conference on Distributed Computing Systems (ICDCS 2022)
差旅:第 42 届 IEEE 国际分布式计算系统会议 (ICDCS 2022) 差旅支持
- 批准号:
2139584 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Automatic, adaptive and massive parallel data processing on GPU/RDMA clusters in both synchronous and asynchronous modes
SHF:小型:在同步和异步模式下在 GPU/RDMA 集群上自动、自适应和大规模并行数据处理
- 批准号:
2005884 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Travel Support for the 39th IEEE International Conference on Distributed Computing Systems (ICDCS 19)
第 39 届 IEEE 国际分布式计算系统会议 (ICDCS 19) 的差旅支持
- 批准号:
1931341 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Inferring Marine Particle Properties from Polarized Volume Scattering Functions
合作研究:从偏振体散射函数推断海洋颗粒特性
- 批准号:
1917337 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Organisation and regulation of bacterial enhancer-binding proteins
细菌增强子结合蛋白的组织和调节
- 批准号:
BB/R018499/1 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Travel Support for the 38th IEEE International Conference on Distributed Computing Systems (ICDCS 18)
第 38 届 IEEE 国际分布式计算系统会议 (ICDCS 18) 的差旅支持
- 批准号:
1836366 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
- 批准号:32370966
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
III: Small: Enabling Declarative Querying and Analytics over Large Dynamic Information Networks
III:小型:在大型动态信息网络上实现声明式查询和分析
- 批准号:
1319432 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Microbicide intravaginal ring IND enabling studies
杀菌剂阴道环 IND 启用研究
- 批准号:
8467256 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
III:Small:Enabling Technology for Best-Effort Data Integration Systems
III:小型:尽力而为数据集成系统的支持技术
- 批准号:
1018792 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
HCC: III: Small Grant: Enabling the Use of Virtual Worlds for Research and Teaching in Archaeology
HCC:III:小额资助:支持使用虚拟世界进行考古学研究和教学
- 批准号:
1018512 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
III-COR-Small: Beyond Keyword Search: Enabling Diverse Structured Query Paradigms over Text Databases
III-COR-Small:超越关键字搜索:在文本数据库上启用多样化的结构化查询范式
- 批准号:
0811038 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant