Enabling Millimeter Scale Deeply Implanted Glucose Sensors through Ultrasonic Power Transfer and a Novel Glucose Sensing Mechanism
通过超声波功率传输和新型葡萄糖传感机制实现毫米级深度植入葡萄糖传感器
基本信息
- 批准号:1408265
- 负责人:
- 金额:$ 37.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Title:Enabling Millimeter Scale Deeply Implanted Glucose Sensors through Ultrasonic Power Transfer and a Novel Glucose Sensing Mechanism Proposal Goal:The goal of the proposed project is to enable a new mode for power transfer to and communication with a deeply implanted intraluminal glucose monitor. The current state of the art in integrated circuit and MEMS sensing technologies enables cubic mm size implementations of complex systems for implanted sensors. However, such implementations are never actually realized because the necessary power and communications systems are too large. At very small sizes and large implantdepths acoustic energy transfer through human tissue is fundamentally more efficient than either near field electromagnetic (EM) or far field (RF). The long term goal of this research is to create an ultrasonic power and communications platform that will enable unobtrusive long term monitoring of health status through implanted sensing and therapeutic devices.Nontechnical Abstract: The past few decades have seen a dramatic increase in the prevalence of diabetes mellitus and obesity. The chief complications of these chronic diseases are cardiac disease, kidney failure leading to dialysis, retinopathy leading to blindness, and neuropathy and vascular insufficiency leading to amputations. These exert a huge toll, both in financial terms and in human suffering. Our research directly addresses this problem by developing new technologies that will enable long term implantable glucose monitors without the need for transcutaneous wires. This project addresses two fundamental problems with the current state of the art in implantable glucose sensors: lack of a suitable power supply or power transmission mechanism, and the short lifetime and frequent need for re-calibration of glucose oxidase based sensors. As part of this project, the PIs will create an ultrasonic power transmission platform that will allow the glucose sensor (or any highly miniaturized implantable bio-sensor) to be directly powered by ultrasonic energy. At very small sizes and large implant depths acoustic energy transfer through human tissue is fundamentally more efficient than either near field electromagnetic (EM) or far field (RF), the two most common methods of powering implanted sensors. This project will investigate micro-scale acoustic transducer designs and architectures that enable higher power density transmission than either EM or RF transmission through human tissue. To address the second fundamental problem with the state of the art, the PIs will explore a new glucose sensing method using hydrogels with embedded magnetic particles. This method overcomes several limitations that plague current enzymatic continuous glucose sensors and also allows the electronics to be robustly encapsulated as the electronic sensing element does not have to be in direct contact with the hydrogel. Together these advancements promise to enable a vastly improved method of sensing blood glucose and delivering power to any highly miniaturized implantable bio-sensor.Technical Abstract: This research addresses two major challenges that limit the potential of implanted biosensors in general, and glucose monitors in particular. The first is transferring energy at sufficient densities to enable extreme miniaturization. While still more efficient than RF or EM energy transfer, at very small scales, standard ultrasonic transducers rapidly start to lose efficiency due to the interplay between the optimal device thickness, acoustic wavelength, and the frequency dependence of acoustic absorption in tissue. Our guiding hypothesis is that alternative piezoelectric structures will be more efficient at these small sizes. Our work will couple acoustic transmission models, transducer design, and experimental work to empirically determine key interaction effects probing the limits of acoustic power generation at very small scales.Secondly, the research will address a significant issue with glucose sensors, namely that their lifetime is severely limited and they must be frequently re-calibrated because of their reliance on the availability glucose oxidase and oxygen to perform accurate measurements. The PIs will explore a new method using hydrogels with embedded aligned magnetic particles to sense glucose rather than the traditional electrochemical process. These functionalized hydrogels swell in the presence of glucose. The swelling is sensed through the change in inductance value of a miniature coil placed next to the hydrogel. This method not only overcomes several limitations that plague current enzymatic continuous glucose sensors but also allows the electronics to be robustly encapsulated as the sensing coil does not have to be in direct contact with the hydrogel. The sensing coil will be multi-purposed to send data back from the implant in a mm scale system demonstration. Taken together, the three different aspects of this work could provide a basis for fundamentally smaller, longer life implanted sensors.
提案标题:通过超声波传输和一种新型的葡萄糖传感机制提案目标实现毫米尺度深植入的葡萄糖传感器提案目标:拟议项目的目标是启用一种新的模式,以将电力传输到与深层植入的内腔内葡萄糖监测器。集成电路和MEMS传感技术中的最新技术实现了植入传感器的复杂系统的立方MM大小实现。但是,由于必要的功率和通信系统太大,因此从未实现此类实现。在很小的尺寸和大型植入植物中,通过人体组织的声能转移比近场电磁(EM)或远场(RF)的效率更高。这项研究的长期目标是创建一个超声波电源和通信平台,该平台将通过植入的感应和治疗设备对健康状况的不显眼监测。非技术性摘要:过去几十年来,糖尿病和肥胖症的患病率急剧增加。 这些慢性疾病的主要并发症是心脏病,导致透析的肾衰竭,导致失明的视网膜病,神经病和血管不足导致截肢。这些在财务方面和人类苦难中造成了巨大的损失。 我们的研究直接通过开发新技术来解决这个问题,这些新技术将使长期植入葡萄糖监测器无需经皮线。 该项目解决了可植入的葡萄糖传感器中最新技术的两个基本问题:缺乏合适的电源或传输机制,以及对基于葡萄糖氧化酶的传感器重新校准的寿命和频繁需要的短期和频繁的需求。 作为该项目的一部分,PI将创建一个超声波电源传输平台,该平台将允许葡萄糖传感器(或任何高度微型植入植入的生物传感器)直接由超声波能量提供动力。 在很小的尺寸和较大的植入物深度上,通过人体组织的声能转移比近场电磁(EM)或FAR FIELD(RF)高效,这是供电植入传感器的两种最常见的方法。 该项目将研究微观的声音传感器设计和体系结构,这些设计和体系结构比通过人体组织的EM或RF传输能够更高的功率传输。 为了解决技术状态的第二个基本问题,PI将使用带有嵌入式磁性颗粒的水凝胶探索一种新的葡萄糖传感方法。 该方法克服了困扰电流酶促连续葡萄糖传感器的几个局限性,并且还允许电子设备可靠地封装,因为电子传感元件不必直接与水凝胶直接接触。 这些进步共同有望使一种大大改进的方法传感血糖并为任何高度微型植入的生物传感器传递能力。技术摘要:这项研究解决了两个主要挑战,这些挑战限制了一般植入的生物传感器的潜力,尤其是葡萄糖显示器。首先是以足够的密度转移能量以实现极端的微型化。 虽然比RF或EM能量转移更有效,但在很小的尺度上,由于最佳装置厚度,声波长度和组织中声学吸收的频率依赖性,因此标准超声传感器迅速开始失去效率。我们的指导假设是,在这些小尺寸的情况下,替代压电结构将更有效。我们的工作将授予声学传播模型,换能器的设计和实验性工作,以确定探测在非常小的规模下声发电的限制的关键交互作用效果。相互秒为止,这项研究将解决葡萄糖传感器的重大问题,即它们的寿命受到严格的限制,并且必须重新计算其对氧化氧化的依次,并且对氧化氧化的氧化量进行了衡量,并且对氧化氧化的氧化度进行了衡量和氧化氧化均方。 PI将使用带有嵌入式对齐的磁性颗粒的水凝胶探索一种新方法,以感知葡萄糖而不是传统的电化学过程。 在存在葡萄糖的情况下,这些功能化水凝胶肿胀。 通过放置在水凝胶旁边的微型线圈的电感值的变化来感觉到肿胀。 这种方法不仅克服了困扰电流酶连续葡萄糖传感器的几个局限性,而且还可以使电子设备可靠地封装,因为传感线圈不必直接与水凝胶直接接触。 传感线圈将被多用,以在MM量表系统演示中从植入物中寄回数据。综上所述,这项工作的三个不同方面可以为从根本上较小,更长的寿命传感器提供基础。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A MEMS-Scale Ultrasonic Power Receiver for Biomedical Implants
- DOI:10.1109/lsens.2019.2904194
- 发表时间:2019-04-01
- 期刊:
- 影响因子:2.8
- 作者:Basaeri, Hamid;Yu, Yuechuan;Roundy, Shad
- 通讯作者:Roundy, Shad
An In-Vitro Study of Wireless Inductive Sensing and Robust Packaging for Future Implantable Hydrogel-Based Glucose Monitoring Applications
针对未来植入式水凝胶血糖监测应用的无线感应传感和坚固封装的体外研究
- DOI:10.1109/jsen.2019.2949056
- 发表时间:2020
- 期刊:
- 影响因子:4.3
- 作者:Yu, Yuechuan;Nguyen, Tram;Tathireddy, Prashant;Roundy, Shad;Young, Darrin J.
- 通讯作者:Young, Darrin J.
Acoustic power transfer for biomedical implants using piezoelectric receivers: effects of misalignment and misorientation
- DOI:10.1088/1361-6439/ab257f
- 发表时间:2019-08-01
- 期刊:
- 影响因子:2.3
- 作者:Basaeri, Hamid;Yu, Yuechuan;Roundy, Shad
- 通讯作者:Roundy, Shad
Architectures for wrist-worn energy harvesting
- DOI:10.1088/1361-665x/aa94d6
- 发表时间:2018-04-01
- 期刊:
- 影响因子:4.1
- 作者:Rantz, R.;Halim, M. A.;Roundy, S.
- 通讯作者:Roundy, S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shad Roundy其他文献
Cutaneous Leishmaniasis of the Lower Lip in a United States Soldier
- DOI:
10.1016/j.joms.2007.12.045 - 发表时间:
2008-07-01 - 期刊:
- 影响因子:
- 作者:
Shad Roundy;Jeffrey Almony;Theodore Zislis - 通讯作者:
Theodore Zislis
Shad Roundy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shad Roundy', 18)}}的其他基金
U.S.-Ireland R&D Partnership: Highly efficient magnetoelectric nano-antenna arrays with wide operational bandwidth
美国-爱尔兰 R
- 批准号:
2320320 - 财政年份:2023
- 资助金额:
$ 37.51万 - 项目类别:
Standard Grant
Collaborative Research: Space Charge Induced Flexoelectric (SCIF) Transducers: A New Technology to Eliminate the Environmental Cost of Leaded Piezoelectric Transducers
合作研究:空间电荷感应柔性 (SCIF) 传感器:消除含铅压电传感器环境成本的新技术
- 批准号:
2247453 - 财政年份:2023
- 资助金额:
$ 37.51万 - 项目类别:
Standard Grant
CAREER: Powering Micro Scale Biomedical Implants through Controlled Low Frequency Magnetic Fields and Multiferroic Transducers
职业:通过受控低频磁场和多铁性换能器为微型生物医学植入物提供动力
- 批准号:
1651438 - 财政年份:2017
- 资助金额:
$ 37.51万 - 项目类别:
Standard Grant
BRIGE: Adaptive Vibrational Energy Harvesting Systems through Semi-Passive Control of Nonlinear Oscillators
BRIGE:通过非线性振荡器半被动控制的自适应振动能量收集系统
- 批准号:
1342070 - 财政年份:2013
- 资助金额:
$ 37.51万 - 项目类别:
Standard Grant
相似国自然基金
面向6G的毫米波大规模免调度传输理论方法
- 批准号:62371122
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
超大规模智能反射表面赋能的毫米波认知式安全传输技术
- 批准号:62371357
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
智能超表面辅助通信的毫米波大规模天线系统信道传播特性与机理研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
智能超表面辅助通信的毫米波大规模天线系统信道传播特性与机理研究
- 批准号:62271201
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
非理想条件下毫米波大规模MIMO系统混合波束成形技术研究
- 批准号:62201584
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
BRAIN CONNECTS: A Center for High-throughput Integrative Mouse Connectomics
大脑连接:高通量集成鼠标连接组学中心
- 批准号:
10665380 - 财政年份:2023
- 资助金额:
$ 37.51万 - 项目类别:
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
$ 37.51万 - 项目类别:
BRAIN CONNECTS: Center for a pipeline of high throughput integrated volumetric electron microscopy for whole mouse brain connectomics
大脑连接:用于全小鼠大脑连接组学的高通量集成体积电子显微镜管道中心
- 批准号:
10665386 - 财政年份:2023
- 资助金额:
$ 37.51万 - 项目类别:
Applying human in vitro models to understand the link between trauma and tau pathology
应用人体体外模型来了解创伤与 tau 病理学之间的联系
- 批准号:
10786930 - 财政年份:2023
- 资助金额:
$ 37.51万 - 项目类别: