Applying human in vitro models to understand the link between trauma and tau pathology
应用人体体外模型来了解创伤与 tau 病理学之间的联系
基本信息
- 批准号:10786930
- 负责人:
- 金额:$ 45.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdherent CultureAdmission activityAgonistAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAnimal ModelAstrocytesBiological AssayBloodBlood VesselsBrainBrain InjuriesCalciumCalcium ChannelCell Culture TechniquesCell DeathCell LineCellsChemicalsCoculture TechniquesCulture MediaCytoplasmCytosolDiseaseElectrophysiology (science)Endothelial CellsEnvironmental Risk FactorEventEvolutionGenesGlial Fibrillary Acidic ProteinGoalsHumanHuman GenomeIncidenceInflammatoryInterruptionInvestigationLabelLactate DehydrogenaseLightLinkMeasuresMechanicsMedicineModelingNeuronsOrganoidsOutcomePathologyPatientsPatternPersonsPhenotypePiezo 1 ion channelPlayProcessPrognosisProtein SecretionRecording of previous eventsRoleSignal TransductionSourceStainsStretchingTBI PatientsTauopathiesTestingTimeTraumaTraumatic Brain InjuryWorkbrain cellcadherin 5cell injurycell typecytokineempowermentexperimental studyimprovedin vitro Modelinduced pluripotent stem cellinsightknock-downmicroscopic imagingmillimetermonolayerneurofilamentnew therapeutic targetpersonalized medicinepreventresponsescale upscreeningsmall hairpin RNAstem cellstau Proteinstau-1therapeutic target
项目摘要
Traumatic brain injury (TBI) is the most important environmental risk factor for Alzheimer’s disease and
Alzheimer’s disease related dementias (AD/ADRD). The TBI event may occur years before the emergence of
AD/ADRD so there is time to apply treatments. Unfortunately, no appropriate treatments exist because the
connection between TBI and AD/ADRD is poorly understood. Changes in tau proteins play an important role in
AD/ADRD. Calcium overload drives changes in tau. Calcium overload is also a consequence of TBI. This
proposal hypothesizes that TBI causes calcium overload that leads to tau changes and this sequence helps
explain why TBI increases the risk of AD/ADRD. Piezo1 is a calcium channel that opens when cells deform.
Therefore, it could be opened by trauma. This proposal will test this hypothesis in cortical astrocytes, cortical
neurons, and endothelial cells. These cells will be generated from human induced pluripotent stem cells. The
first Aim will measure how vulnerable each cell type is to trauma. The cells will be deformed in the same way
they are during a TBI event and resulting cell death and cell damage will be measured. Calcium overload and
inflammatory signaling will also be quantified. In patient brains, tau changes accumulate around blood vessels
after TBI but it is not clear if this pattern reflects the toxic influence of blood or the endothelial cells that line
blood vessels. Therefore, the influence of endothelial cells on neighboring astrocytes and neurons will be
measured with experiments that either mix cells in culture or transfer cell culture media between cell cultures.
Experiments with trauma-sensitive outcomes will be repeated after Piezo1 has been eliminated from the cells
to determine if Piezo1 is required for a trauma response. In addition, the same outcomes will be measured in
experiments that activate Piezo1 chemically without trauma. The second Aim will employ brain organoids.
These are clusters of brain cells that are approximately round and about 1 millimeter wide. They contain
cortical neurons and astrocytes and, in some cases, endothelial cells will be added to them. These organoids
can reproduce the calcium overload-dependent tau changes that are hypothesized to drive disease in post-TBI
AD/ADRD. They will be mechanically deformed in the same way they would be deformed during a TBI event.
Resulting cell death and cell damage will be quantified. Secretion of proteins known to indicate brain damage
and changes in spontaneous electrical activity will also be measured. In addition, total tau protein and
phosphorylated tau protein will be quantified after trauma. Microscopic imaging will determine if tau changes
accumulate around endothelial cells when they are present. As before, experiments that show sensitivity to
trauma will be repeated after Piezo1 has been eliminated from the cells. Then, they will be repeated when
Piezo1 has been activated chemically without trauma. In combination, these experiments will reproduce the
progression from mechanical trauma to tau changes that drive AD/ADRD and reveal the role of Piezo1 in that
process. These results will be an important step toward treating these patients to interrupt this progression.
创伤性脑损伤(TBI)是阿尔茨海默氏病和
阿尔茨海默氏病有关的痴呆症(AD/ADRD)。 TBI事件可能发生在出现之前的几年
AD/ADRD,因此有时间进行治疗。不幸的是,没有适当的治疗,因为
TBI与AD/ADRD之间的联系知之甚少。 tau蛋白质的变化在
广告/adrd。钙超负荷驱动tau的变化。钙超负荷也是TBI的结果。这
提案假设TBI导致钙过载,从而导致Tau变化,并且此序列有助于
解释为什么TBI增加了AD/ADRD的风险。压电1是一个钙通道,当细胞变形时打开。
因此,可以通过创伤打开。该建议将在皮质星形胶质细胞中检验该假设
神经元和内皮细胞。这些细胞将由人类诱导的多能干细胞产生。这
第一个目标将衡量每种细胞类型对创伤的脆弱性。细胞将以相同的方式变形
它们是在TBI事件中,将测量导致的细胞死亡和细胞损伤。钙超载和
炎症信号传导也将被量化。在患者的大脑中,tau变化在血管周围积聚
在TBI之后
血管。因此,内皮细胞对相邻星形胶质细胞和神经元的影响将是
用实验测量的实验,该实验要么在细胞培养物之间混合细胞或在细胞培养之间转移细胞培养基。
从细胞中消除压电1后,将重复具有创伤敏感结果的实验
确定创伤反应是否需要压电。另外,将在
实验会在没有创伤的情况下化学激活压电。第二个目标将采用脑器官。
这些是大约圆形和约1毫米宽的脑细胞的簇。它们包含
皮质神经元和星形胶质细胞以及在某些情况下会添加内皮细胞。这些类器官
可以重现钙依赖于过载的TAU变化,该变化被认为是驱动TBI疾病的疾病
广告/adrd。它们将通过TBI事件中将它们变形的方式进行机械变形。
导致的细胞死亡和细胞损伤将被量化。已知表明脑损伤的蛋白质的分泌
并且还将测量赞助电动活动的变化。另外,总tau蛋白和
创伤后将定量磷酸化的tau蛋白。微观成像将确定tau是否改变
存在时在内皮细胞周围积聚。和以前一样,表现出敏感性的实验
从细胞中消除了压电1后,将重复创伤。然后,当它们将在
压电1已被化学激活而没有创伤。结合起来,这些实验将重现
从机械创伤到tau变化的进展变化,这些变化驱动AD/ADRD并揭示了Piezo1的作用
过程。这些结果将是治疗这些患者以中断这种进展的重要一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John D Finan其他文献
John D Finan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John D Finan', 18)}}的其他基金
Novel tools for in vitro electrophysiology and neurotrauma modeling
用于体外电生理学和神经创伤建模的新工具
- 批准号:
10411892 - 财政年份:2020
- 资助金额:
$ 45.7万 - 项目类别:
Novel tools for in vitro electrophysiology and neurotrauma modeling
用于体外电生理学和神经创伤建模的新工具
- 批准号:
10250763 - 财政年份:2020
- 资助金额:
$ 45.7万 - 项目类别:
Novel tools for in vitro electrophysiology and neurotrauma modeling
用于体外电生理学和神经创伤建模的新工具
- 批准号:
10573222 - 财政年份:2020
- 资助金额:
$ 45.7万 - 项目类别:
A High Throughput, Human, In Vitro Model of Neuronal Stretch Injury
神经元牵张损伤的高通量人体体外模型
- 批准号:
9316304 - 财政年份:2017
- 资助金额:
$ 45.7万 - 项目类别:
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 45.7万 - 项目类别:
Defining single-channel paracellular (tight junction) conductances using nanotechnology
使用纳米技术定义单通道旁细胞(紧密连接)电导
- 批准号:
10593421 - 财政年份:2023
- 资助金额:
$ 45.7万 - 项目类别:
Spatial and Single Cell Transcriptomics Approach to Understand Neuron-Oligodendrocyte Communication in Human Synaptic Development
了解人类突触发育中神经元-少突胶质细胞通讯的空间和单细胞转录组学方法
- 批准号:
10646970 - 财政年份:2023
- 资助金额:
$ 45.7万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 45.7万 - 项目类别:
In search of synergistic drug interactions in cancer
寻找癌症中的协同药物相互作用
- 批准号:
10651215 - 财政年份:2023
- 资助金额:
$ 45.7万 - 项目类别: