Novel tools for in vitro electrophysiology and neurotrauma modeling
用于体外电生理学和神经创伤建模的新工具
基本信息
- 批准号:10573222
- 负责人:
- 金额:$ 60.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-17 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerometerAddressAdherenceAdherent CultureBiological SciencesBiomedical EngineeringBloodBrainCaringCause of DeathCell Culture TechniquesCellsCollaborationsComplexDataDevelopmentDiseaseElectrodesElectroencephalographyElectrophysiology (science)EngineeringEthical IssuesEthicsEtiologyExperimental GeneticsGenesGenetic IdentityGenomeGenotypeGoalsHelmetHumanIn VitroMeasuresMechanicsMissionModelingMolecularNational Institute of Neurological Disorders and StrokeNerve DegenerationNervous System TraumaNeuronsOrganoidsOutcomeOutputPathologyPatientsPhenotypePopulationProteomicsPublic HealthResearchRestRiskRisk AssessmentRisk FactorsRoleSecureSkinStretchingStructureTBI PatientsTBI treatmentTestingTimeTraumaTraumatic Brain InjuryUnited StatesWorkbehavior testcandidate identificationclinically relevantdesigndisabilitydrug discoveryelectric fieldexperimental studyfascinateflexibilitygenetic variantin vitro Modelinsightmillimetermulti-electrode arraysmultidisciplinarynervous system disorderneuralnovelpersonalized medicinephase III trialphysical scienceprecision medicineresponseserial imagingstem cell technologystem cellssuccesssynergismthree dimensional cell culturetool
项目摘要
Traumatic brain injury (TBI) remains a significant cause of death and disability in its own right in the United
States and is an important risk factor for other neurodegenerative conditions. However, there are currently
no approved therapies for TBI and its long term consequences are difficult to predict. More than 30 major
phase III trials have failed without a single success so discovery of a universal therapy seems increasingly
unlikely. NINDS and other federal agencies have committed tens of millions of dollars to large,
observational, human studies of TBI. These studies are genotyping and deeply phenotyping TBI patients
with the goal of personalizing therapy. These efforts have already revealed fascinating correlations between
genotype and TBI outcome. However, genes cannot be switched on an off in humans for ethical reasons.
Therefore, new tools are necessary to move from detecting correlations to testing hypotheses. This
challenge has been addressed in other diseases using human, in vitro models. Human neurons generated
from patients using stem cell technology retain the genetic identity of the patient. Also, genetic variants can
be changed one at a time in these cells. Therefore, hypotheses about the role of genotype in disease can
be tested in human, in vitro models but only if the disease pathology can reproduced in vitro. Reproducing
neurotrauma pathology in vitro requires special tools because it depends intrinsically on a mechanical insult.
The goal of this proposal is to provide new tools for modeling neurotrauma in vitro that can take advantage
of exciting recent developments in human, in vitro cultures. Target-driven drug discovery is difficult in
neurotrauma because the molecular mechanisms are complex. Phenotypic drug discovery is therefore
preferable but it can succeed only if it addresses a clinically relevant phenotype. In vitro, electrical field
recordings are attractive because they are analogous to electroencephalography, which is commonly used
to assess TBI patients. This work will contribute the first, multi-electrode array (MEA) that can acquire field
recordings from a high throughput, in vitro model. Brain organoids reproduce aspects of disease that cannot
be reproduced in 2D cultures. However, electrical field recordings are difficult to acquire from brain
organoids because conventional, multi-electrode arrays are designed for adherent cultures while brain
organoids require ultra-low adherence conditions. Therefore, novel, sub-millimeter scale structures are
proposed that will enclose an organoid inside an array of electrodes without adhering to it so that long term
measures of electrical activity and connectivity can be made. These 3D MEAs will contribute new insights to
many neurological disorders beside neurotrauma. Currently, there are no tools available that can apply a
biofidelic, mechanical insult to an organoid culture. The proposed work will develop such a tool. In
combination, these new tools will open new horizons in the field around personalizing therapy, probing
disease mechanism and offering patient-specific risk assessment.
创伤性脑损伤 (TBI) 本身仍然是美国死亡和残疾的一个重要原因
是其他神经退行性疾病的重要危险因素。然而,目前有
目前还没有批准的治疗 TBI 的疗法,其长期后果很难预测。 30多个专业
III 期试验失败了,没有一次成功,因此似乎越来越多地发现通用疗法
不太可能。 NINDS 和其他联邦机构已承诺向大型、
TBI 的观察性人体研究。这些研究对 TBI 患者进行基因分型和深度表型分析
以实现个性化治疗的目标。这些努力已经揭示了之间令人着迷的相关性
基因型和 TBI 结果。然而,出于伦理原因,人类的基因不能被打开或关闭。
因此,需要新的工具从检测相关性转向检验假设。这
已经使用人体体外模型解决了其他疾病中的挑战。人类神经元产生
使用干细胞技术从患者身上保留患者的遗传身份。此外,基因变异也可以
在这些单元格中一次更改一个。因此,关于基因型在疾病中的作用的假设可以
可以在人体体外模型中进行测试,但前提是疾病病理学可以在体外重现。繁殖
体外神经创伤病理学需要特殊的工具,因为它本质上依赖于机械损伤。
该提案的目标是提供体外神经创伤建模的新工具,可以利用
人类体外培养中令人兴奋的最新进展。靶点驱动的药物发现是困难的
神经损伤,因为其分子机制很复杂。因此,表型药物发现
更好,但只有解决临床相关表型才能成功。体外,电场
录音很有吸引力,因为它们类似于常用的脑电图
评估 TBI 患者。这项工作将贡献第一个可以获取场的多电极阵列(MEA)
来自高通量体外模型的记录。大脑类器官能够再现疾病的某些方面,而这些方面是无法再现的。
可以在二维文化中复制。然而,很难从大脑中获取电场记录
类器官,因为传统的多电极阵列是为贴壁培养而设计的,而大脑
类器官需要超低依从性条件。因此,新颖的亚毫米级结构
提议将类器官封装在电极阵列内而不粘附它,以便长期
可以进行电活动和连接性的测量。这些 3D MEA 将为
除了神经外伤之外的许多神经系统疾病。目前,没有可用的工具可以应用
对类器官培养物的生物忠实的机械损伤。拟议的工作将开发这样一个工具。在
结合起来,这些新工具将在个性化治疗、探索领域开辟新视野
疾病机制并提供针对患者的风险评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John D Finan其他文献
John D Finan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John D Finan', 18)}}的其他基金
Applying human in vitro models to understand the link between trauma and tau pathology
应用人体体外模型来了解创伤与 tau 病理学之间的联系
- 批准号:
10786930 - 财政年份:2023
- 资助金额:
$ 60.83万 - 项目类别:
Novel tools for in vitro electrophysiology and neurotrauma modeling
用于体外电生理学和神经创伤建模的新工具
- 批准号:
10411892 - 财政年份:2020
- 资助金额:
$ 60.83万 - 项目类别:
Novel tools for in vitro electrophysiology and neurotrauma modeling
用于体外电生理学和神经创伤建模的新工具
- 批准号:
10250763 - 财政年份:2020
- 资助金额:
$ 60.83万 - 项目类别:
A High Throughput, Human, In Vitro Model of Neuronal Stretch Injury
神经元牵张损伤的高通量人体体外模型
- 批准号:
9316304 - 财政年份:2017
- 资助金额:
$ 60.83万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向结构和地震运动监测的低成本GNSS和加速度计集成方法研究
- 批准号:42311530062
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
柔性MEMS谐振式加速度计的共形设计与热弹性耦合动力学分析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
石英振梁加速度计稳定性漂移机理及其亚μg级调控机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Ultra Wideband Fall Detection and Prediction Solution for People Living with Dementia
针对痴呆症患者的超宽带跌倒检测和预测解决方案
- 批准号:
10760690 - 财政年份:2023
- 资助金额:
$ 60.83万 - 项目类别:
Exoskeleton Research: Myoelectric orthosis for rehab of severe chronic arm motor deficits
外骨骼研究:用于严重慢性手臂运动缺陷康复的肌电矫形器
- 批准号:
10420277 - 财政年份:2022
- 资助金额:
$ 60.83万 - 项目类别:
Exoskeleton Research: Myoelectric orthosis for rehab of severe chronic arm motor deficits
外骨骼研究:用于严重慢性手臂运动缺陷康复的肌电矫形器
- 批准号:
10609509 - 财政年份:2022
- 资助金额:
$ 60.83万 - 项目类别:
Novel tools for in vitro electrophysiology and neurotrauma modeling
用于体外电生理学和神经创伤建模的新工具
- 批准号:
10411892 - 财政年份:2020
- 资助金额:
$ 60.83万 - 项目类别:
Neighborhood Risk Factors for Falls in the Elderly
老年人跌倒的社区危险因素
- 批准号:
10625284 - 财政年份:2020
- 资助金额:
$ 60.83万 - 项目类别: