CAREER: Powering Micro Scale Biomedical Implants through Controlled Low Frequency Magnetic Fields and Multiferroic Transducers
职业:通过受控低频磁场和多铁性换能器为微型生物医学植入物提供动力
基本信息
- 批准号:1651438
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Biomedical implants hold the promise of dramatically improving health and well-being by, for example, enabling people to pro-actively monitor health through real-time tracking of internal body chemistry (e.g. pH, glucose, lactate, tissue oxygen), treat diseases through targeted and tailored drug delivery, treat neural disorders through neural prostheses, etc. However, this vision is only possible if implants become much smaller with longer lifetimes. The current state of the art in integrated circuit and micro-sensor design and manufacturing could enable cubic millimeter sized implants that would greatly reduce trauma to the patient and improve continuous health monitoring. However, power systems have lagged behind and become a barrier to implant miniaturization. Very small batteries would quickly become depleted and then the entire implant would have to be surgically replaced. The goal of this project is to overcome this power problem by wirelessly transmitting power to the biomedical implants using low frequency magnetic fields that easily penetrate the human body. These magnetic fields will excite a magnetoelectric power receiver that will be part of the implant. The magnetoelectric receiver will convert the magnetic fields to electricity which will then be properly conditioned to power the implant. The Principle Investigator (PI) and affiliated researchers will explore two competing types of magnetoelectric devices and characterize them especially in terms of uncertainties related to the position and alignment of the implant and associated power receiver. New fabrication processes will be developed that enable micro-scale magnetoelectric devices to generate more power, thus enabling further miniaturization for biomedical implants. In addition to enabling the miniaturization of implants, the work to be accomplished by this project could have broader benefits for the state of the art in both sensing and wireless power transfer.The goal of this project is to explore the use of low frequency magnetic fields coupled with magnetoelectric power receivers to transmit power to biomedical implants. The target goal is to safely supply 100 microwatts per cubic millimeter, which would enable a wide range of implanted sensors and therapeutic devices. Low frequency magnetic fields are attractive because of their very low absorption in human tissue and encapsulating structures. Two classes of magnetoelectric devices will be investigated: laminates of magnetostrictive and piezoelectric material, and jointly fabricated permanent magnet / piezoelectric structures. The two approaches will be compared given alignment and orientation uncertainties and issues associated with human tissue interaction. Specifically, researchers will characterize the surrounding tissue's role in degrading the quality factor of the resonant magnetoelectric power receivers. The key relationships for power generation by this method as well as performance limits will be elucidated and experimentally validated, which will serve as a basis for system design. A new microfabrication process will be developed to enable high power transducers through the use of much thicker active materials (i.e. piezoelectric and magnetostrictive). Finally, a system to control the DC voltage used by the implant from the external transmitter will be developed and validated to remove the need for large onboard passive components associated with traditional power electronics. The efficacy of the external control method will be fully characterized with respect to stability of the DC voltage and robustness to system uncertainties. The results of this research will establish the basis for much smaller, more ubiquitous biomedical implants by overcoming the issue of delivering power at sufficient densities.
例如,生物医学植入物具有大大改善健康和福祉的希望,例如,通过实时跟踪内部身体化学(例如pH,葡萄糖,葡萄糖,乳酸,组织氧),通过有针对性和量身定制的药物来治疗神经疾病,可以使疾病变得更长的情况下,可以使疾病变得更长,因此,如果这种愿景可以使人们能够较小,则可以使疾病越来越多。 当前的综合电路和微传感器设计和制造业的最新状态可以实现立方毫米大小的植入物,从而大大减轻患者的创伤并改善连续的健康监测。但是,电力系统已经落后并成为植入物微型化的障碍。很小的电池将很快耗尽,然后必须将整个植入物进行手术替换。该项目的目的是通过使用轻松穿透人体的低频磁场将功率无线传输到生物医学植入物来克服此功率问题。这些磁场将激发将成为植入物一部分的磁电源接收器。 磁电接收器将将磁场转换为电能,然后将其适当地调节以供电。 主要研究者(PI)和附属研究人员将探索两种相互竞争的磁电器设备,并尤其是在与植入物和相关功率接收器的位置和对齐相关的不确定性方面的特征。 将开发新的制造工艺,以使微型磁电设备能够产生更多的功率,从而为生物医学植入物提供进一步的微型化。 除了实现植入物的微型化外,该项目要完成的工作在感应和无线功率传输方面可能会为最新技术带来更大的好处。该项目的目的是探索使用低频磁场以及磁电力电源接收机的使用,以向生物植入物传递电源。目标目标是安全提供每立方毫米100毫米,这将使多种植入的传感器和治疗设备能够提供。 低频磁场由于在人体组织中的吸收非常低而具有吸引力。将研究两类的磁电器设备:磁性和压电材料的层压板,以及共同制造的永久磁铁 /压电结构。将两种方法进行比较和定向不确定性以及与人体组织相互作用相关的问题。具体而言,研究人员将表征周围组织在降低谐振磁电源接收器的质量因素方面的作用。 通过此方法以及性能限制的发电的关键关系将得到阐明和实验验证,这将是系统设计的基础。将开发出新的微型制造过程,以通过使用更厚的活性材料(即压电和磁性磁性)来实现高功率传感器。最后,将开发和验证植入物从外部发射器中使用的直流电压的系统,以消除对与传统电力电子相关的大型机载被动组件的需求。外部控制方法的功效将在直流电压和对系统不确定性的稳定性的稳定性方面充分表征。这项研究的结果将通过克服足够密度传递功率的问题来为更小,普遍的生物医学植入物建立基础。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Energy harvesting and wireless power transfer in a unified system for wearable devices
可穿戴设备统一系统中的能量收集和无线功率传输
- DOI:10.1109/powermems49317.2019.92321112648
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Truong, Binh Duc;Roundy, Caleb;Rantz, Robert;Roundy, Shad
- 通讯作者:Roundy, Shad
Design, Modeling, and Analysis of Inductive Resonant Coupling Wireless Power Transfer for Micro Aerial Vehicles (MAVs)
- DOI:10.1109/icra.2018.8461162
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:Gregory M. Plaizier;Erik Andersen;B. Truong;Xiang He;S. Roundy;K. Leang
- 通讯作者:Gregory M. Plaizier;Erik Andersen;B. Truong;Xiang He;S. Roundy;K. Leang
A review of wireless power transfer using magnetoelectric structures
- DOI:10.1088/1361-665x/ac9166
- 发表时间:2022-09
- 期刊:
- 影响因子:4.1
- 作者:Orpita Saha;B. Truong;S. Roundy
- 通讯作者:Orpita Saha;B. Truong;S. Roundy
Experimentally validated model and power optimization of a magnetoelectric wireless power transfer system in free-free configuration
- DOI:10.1088/1361-665x/ab90a2
- 发表时间:2020-07
- 期刊:
- 影响因子:4.1
- 作者:B. Truong;S. Roundy
- 通讯作者:B. Truong;S. Roundy
Experiments on a wireless power transfer system for wearable device with sol-gel thin-film PZT
溶胶-凝胶薄膜PZT可穿戴设备无线电力传输系统实验
- DOI:10.1088/1742-6596/1407/1/012063
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Truong, Binh Duc;Wang, Dixiong;Xue, Tiancheng;Trolier-McKinstry, Susan;Roundy, Shad
- 通讯作者:Roundy, Shad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shad Roundy其他文献
Cutaneous Leishmaniasis of the Lower Lip in a United States Soldier
- DOI:
10.1016/j.joms.2007.12.045 - 发表时间:
2008-07-01 - 期刊:
- 影响因子:
- 作者:
Shad Roundy;Jeffrey Almony;Theodore Zislis - 通讯作者:
Theodore Zislis
Shad Roundy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shad Roundy', 18)}}的其他基金
U.S.-Ireland R&D Partnership: Highly efficient magnetoelectric nano-antenna arrays with wide operational bandwidth
美国-爱尔兰 R
- 批准号:
2320320 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Space Charge Induced Flexoelectric (SCIF) Transducers: A New Technology to Eliminate the Environmental Cost of Leaded Piezoelectric Transducers
合作研究:空间电荷感应柔性 (SCIF) 传感器:消除含铅压电传感器环境成本的新技术
- 批准号:
2247453 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Enabling Millimeter Scale Deeply Implanted Glucose Sensors through Ultrasonic Power Transfer and a Novel Glucose Sensing Mechanism
通过超声波功率传输和新型葡萄糖传感机制实现毫米级深度植入葡萄糖传感器
- 批准号:
1408265 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
BRIGE: Adaptive Vibrational Energy Harvesting Systems through Semi-Passive Control of Nonlinear Oscillators
BRIGE:通过非线性振荡器半被动控制的自适应振动能量收集系统
- 批准号:
1342070 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
混凝土再生微粉改性煅烧天然粘土及其胶凝材料的水化动力学
- 批准号:52308234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
柔性钙钛矿室内光伏器件中“微-宏观”应力调谐及其载流子复合动力学研究
- 批准号:62305261
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
陆基水产养殖微塑料及添加剂的转化机制与释放动力学
- 批准号:42377373
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肿瘤微环境响应控释纳米药物介导声动力-免疫联合治疗抑制肝癌消融术后转移的研究
- 批准号:82372064
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
肝癌放射性栓塞治疗中钇-90微球输运的血流动力学机理研究
- 批准号:12302401
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:
10099896 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
Revolutionizing Seamless Precipitation Forecast: Machine Learning-Driven Assimilation of Satellite Precipitation Observations in NICAM-LETKF for Powering Global Diurnal and Heavy Rainfall Predictions
彻底改变无缝降水预报:NICAM-LETKF 中机器学习驱动的卫星降水观测同化,为全球昼夜和强降雨预测提供支持
- 批准号:
24K17129 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Powering the Future: Revolutionising Access and Efficiency through Integrated and Sustainable Energy Solutions
为未来提供动力:通过综合和可持续能源解决方案彻底改变能源获取和效率
- 批准号:
10086733 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
ESCALATE - Powering European Union Net Zero Future by Escalating Zero Emission HDVs and Logistic Intelligence
ESCALATE - 通过升级零排放 HDV 和物流智能,为欧盟净零未来提供动力
- 批准号:
10063997 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
EU-Funded
Powering EU Net Zero Future by Escalating Zero Emission HDVs and Logistic Intelligence
通过升级零排放 HDV 和物流智能,为欧盟净零未来提供动力
- 批准号:
10059719 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
EU-Funded