C4: Neuroanatomy
C4:神经解剖学
基本信息
- 批准号:10705971
- 负责人:
- 金额:$ 50.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-08 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AnatomyAreaAtlasesBrainBrain regionCognitionCollaborationsCommunitiesComputer softwareDataData ScienceData SetDecision MakingDemocracyElectron MicroscopyFundingGene ExpressionGene Expression ProfilingGeometryGoalsHistologyHourHumanImageImage AnalysisImaging technologyImmediate-Early GenesLaboratoriesLearningLightMapsMethodsMicroscopyMonitorMusNeuroanatomyNeuronsNeurosciencesOpticsPatternPreparationProcessProtocols documentationQuality ControlReproducibilityResearchResearch Project GrantsRoentgen RaysSamplingShort-Term MemorySiteStainsStandardizationSystemTechniquesThickTimeTissue imagingTissuesTracerTransmission Electron MicroscopyViralWorkanalysis pipelinecell typedata exchangehigh throughput technologyimage processingimprovedin situ sequencingin vivo imagingmicroscopic imagingmillimeterneuralneural circuitneuroimagingneuromechanismprogramsreconstructionrelational databasescale uptooltranscriptomics
项目摘要
Project Summary/Abstract: Core 4, Neuroanatomy
The overall goal of this U19 collaboration is to elucidate how working memory and decision-making are
supported by interacting neurons and brain regions. To achieve this goal, our research projects will need
cutting-edge neuroanatomy tools, which the Neuroanatomy Core will provide. As it has done in the first U19
funding period, this core will continue to support protocols, software, and standards for light-sheet microscopy,
used with viral tracers to map long-range connectivity between brain regions. We will also add two
state-of-the-art imaging technologies: light-sheet microscopy of cleared whole mouse brains to enable
brainwide imaging of neural recording sites and immediate-early gene expression, and serial-section
transmission electron microscopy (TEM) to provide rapid automated ultrastructural analysis.
The first aim will be to support brainwide imaging of neural recording sites, activation patterns, and
connectivity. We will support the automated image processing and brain-registration pipeline that we developed
and extend it to new research aims. Our pipeline will identify recording sites registered to a standardized atlas,
and how brain regions are activated throughout learning. We will provide transcriptional profiling of our imaged
tissue for post-hoc identification of cell types in our imaging datasets.
The second aim will be to optimize electron-microscopy sample preparation and serial sectioning.
Datasets from the TEM system will be processed by our petascale image-analysis pipeline to search for
sequential connectivity underlying sequential neural activity. In the long term, petascale connectomics may be
applied to other projects in the U19 to investigate circuit mechanisms of cognition in various brain areas. Our
TEM system has the highest raw throughput capacity of its kind in the world, but further work is needed to
realize its full potential. This core will optimize sample preparation and serial sectioning for TEM, and complete
software required to fully automate TEM imaging. We will optimize EM staining protocols for uniform, high
contrast in cubic millimeters of tissue, using our new X-ray-assisted technique. We will also optimize our
automated tape-collecting ultramicrotome system, to scale up serial sectioning from 4,000 ultrathin sections to
tens of thousands of sections. The third aim will be to automate high-throughput, parallel TEM imaging. When
complete, our high-throughput technology will enable imaging of cubic-millimeter datasets in a few weeks
instead of the current 6-12 months. New functionalities will extend the duty cycle from the current eight hours
with human monitoring to 24 hours automatically, enabling each TEM to produce over 20 TB of data in 24
hours. Software that can handle data throughput at this scale will be built to realize the full potential of our
imaging pipeline. More broadly, we expect that our pioneering methods for automating light-sheet and electron
microscopy, when shared with the broader community, will improve efficiency, rigor, and reproducibility in
anatomical research across the field of neuroscience and democratize access to petascale connectomics.
项目摘要/摘要:核心 4,神经解剖学
U19 合作的总体目标是阐明工作记忆和决策是如何发挥作用的
由相互作用的神经元和大脑区域支持。为了实现这一目标,我们的研究项目需要
神经解剖学核心将提供尖端的神经解剖学工具。正如第一届U19比赛中所做的那样
资助期间,该核心将继续支持光片显微镜的协议、软件和标准,
与病毒示踪剂一起使用来绘制大脑区域之间的远程连接。我们还将添加两个
最先进的成像技术:对透明的整个小鼠大脑进行光片显微镜检查,以实现
神经记录位点和早期基因表达的全脑成像,以及连续切片
透射电子显微镜 (TEM) 可提供快速自动化超微结构分析。
第一个目标是支持神经记录位点、激活模式和神经记录位点的全脑成像。
连接性。我们将支持我们开发的自动图像处理和大脑注册管道
并将其扩展到新的研究目标。我们的管道将识别注册到标准化地图集的记录站点,
以及在学习过程中大脑区域如何被激活。我们将提供我们的成像的转录分析
用于事后识别我们的成像数据集中的细胞类型的组织。
第二个目标是优化电子显微镜样品制备和连续切片。
来自 TEM 系统的数据集将由我们的千万亿级图像分析管道进行处理,以搜索
顺序连接是顺序神经活动的基础。从长远来看,千万亿级连接组学可能是
应用于U19的其他项目,以研究不同大脑区域的认知回路机制。我们的
TEM 系统具有世界上同类产品中最高的原始吞吐能力,但还需要进一步的工作
充分发挥其潜力。该核心将优化 TEM 的样品制备和连续切片,并完成
完全自动化 TEM 成像所需的软件。我们将优化 EM 染色方案,以实现均匀、高
使用我们新的 X 射线辅助技术以立方毫米的组织进行对比。我们也会优化我们的
自动磁带收集超薄切片机系统,可将连续切片从 4,000 个超薄切片扩大到
数以万计的部分。第三个目标是实现高通量并行 TEM 成像的自动化。什么时候
完成后,我们的高通量技术将在几周内实现立方毫米数据集的成像
而不是现在的 6-12 个月。新功能将把工作周期从目前的八小时延长
24小时自动人工监控,使每个TEM在24小时内产生超过20TB的数据
小时。将构建能够处理如此规模的数据吞吐量的软件,以充分发挥我们的潜力
成像管道。更广泛地说,我们期望我们用于自动化光片和电子的开创性方法
当与更广泛的社区共享时,显微镜将提高实验的效率、严谨性和可重复性
跨神经科学领域的解剖研究,并使千万亿级连接组学的普及化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Sheng-Hung Wang其他文献
Samuel Sheng-Hung Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Sheng-Hung Wang', 18)}}的其他基金
Transcending dynamic and kinetic limits for neuronal calcium sensing
超越神经元钙传感的动态和动力学限制
- 批准号:
8912632 - 财政年份:2015
- 资助金额:
$ 50.22万 - 项目类别:
Transcending dynamic and kinetic limits for neuronal calcium sensing
超越神经元钙传感的动态和动力学限制
- 批准号:
8999033 - 财政年份:2015
- 资助金额:
$ 50.22万 - 项目类别:
Rapid-Scanning Prairie Multiphoton Microscope System for Molecular Biology Models
用于分子生物学模型的快速扫描草原多光子显微镜系统
- 批准号:
7793047 - 财政年份:2010
- 资助金额:
$ 50.22万 - 项目类别:
Dendritic Integration and Cerebellar Synaptic Plasticity
树突整合和小脑突触可塑性
- 批准号:
6832829 - 财政年份:2002
- 资助金额:
$ 50.22万 - 项目类别:
Dendritic Integration and Cerebellar Synaptic Plasticity
树突整合和小脑突触可塑性
- 批准号:
8204508 - 财政年份:2002
- 资助金额:
$ 50.22万 - 项目类别:
Dendritic Integration and Cerebellar Synaptic Plasticity
树突整合和小脑突触可塑性
- 批准号:
7991767 - 财政年份:2002
- 资助金额:
$ 50.22万 - 项目类别:
Imaging adaptive cerebellar processing at cellular resolution in awake mice
以细胞分辨率对清醒小鼠的适应性小脑处理进行成像
- 批准号:
8820398 - 财政年份:2002
- 资助金额:
$ 50.22万 - 项目类别:
Dendritic Integration and Cerebellar Synaptic Plasticity
树突整合和小脑突触可塑性
- 批准号:
6685196 - 财政年份:2002
- 资助金额:
$ 50.22万 - 项目类别:
相似国自然基金
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 50.22万 - 项目类别:
Imaging transcriptomics across developmental stages of early psychotic illness
早期精神病发展阶段的转录组学成像
- 批准号:
10664783 - 财政年份:2023
- 资助金额:
$ 50.22万 - 项目类别:
The Genetics of Personalized Functional MRI Networks
个性化功能 MRI 网络的遗传学
- 批准号:
10650032 - 财政年份:2023
- 资助金额:
$ 50.22万 - 项目类别:
WASHINGTON UNIVERSITY HUMAN TUMOR ATLAS RESEARCH CENTER
华盛顿大学人类肿瘤阿特拉斯研究中心
- 批准号:
10819927 - 财政年份:2023
- 资助金额:
$ 50.22万 - 项目类别:
Functional and structural characterization of human auditory cortex using high resolution MRI
使用高分辨率 MRI 表征人类听觉皮层的功能和结构
- 批准号:
10728782 - 财政年份:2023
- 资助金额:
$ 50.22万 - 项目类别: