Collaborative Research: Analysis and design of textured super-hydrophobic surfaces capable of preventing ice formation on wind turbine blades
合作研究:分析和设计能够防止风力涡轮机叶片结冰的纹理超疏水表面
基本信息
- 批准号:1336502
- 负责人:
- 金额:$ 25.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Raessi, Mehdi / Lackner, MatthewProposal Number: 1336232 / 1336502Institution: University of Massachusetts, Dartmouth / University of Massachusetts AmherstTitle: Collaborative Research: Analysis and design of textured super-hydrophobic surfaces capable of preventing ice formation on wind turbine bladesWind energy is a clean, renewable, and domestic energy source that is abundant in the U.S., in particular in cold climates where ice formation is common. The potential to generate renewable wind energy in cold climates is immense, both in the U.S. and internationally. The current wind energy capacity in cold climates is only 500 MW, however, which is primarily due to the challenges posed by icing at these sites, which has numerous detrimental effects. Mitigation efforts to date have had moderate success at reducing ice accumulation, but reduce efficiency. The research objectives of this project are to better understand the physics of ice formation on wind turbine blades using advanced computational models, to investigate the aerodynamics of wind turbine airfoils and blades that utilize textured surfaces using computational fluid dynamics and a novel turbulence model, and finally to design and then valuate textured super-ice-phobic surfaces for wind turbine blades in order to prevent ice formation. The project aims at addressing the major issue of ice accretion on wind turbine blades by combining the expertise of PIs in wind turbine aerodynamics, turbulence modeling, and multiphase flows and solidification. The research on textured super-hydrophobic surfaces will have a transformative effect on wind energy development in cold climates by reducing ice formation, and thus increasing the turbine?s efficiency and reliability.This project will be the first study to investigate the performance of textured super-hydrophobic surfaces under real-world conditions, and the first to design textured super-ice-phobic surfaces that are specially engineered for the flow fields around wind turbine blades. By taking into account the local flow field around a blade in our computational simulations, we will optimally design texture patterns that may vary along a blade, depending on the relative velocity of the blade and water droplets, in order to achieve most effective super-ice-phobic surfaces. Furthermore, the CFD tool that will be utilized represents a significant advance over the current state of the art for analyzing wind turbine airfoil and blade aerodynamics. This work will create a computational framework that uses a turbulence model designed for the complex physics (including transition, separation, 3D boundary layers, and rotation) occurring on a wind turbine blade, particularly those with textured ice-phobic surfaces. These expected outcomes will provide the predictive capabilities that are necessary to analyze and design the unique ice-phobic blade surfaces that are capable of operating in cold environments, enabling increased development of wind energy in these regions.Accomplishing the research and student education objectives will benefit society via increased production of renewable energy in the U.S. and internationally. An international partnership with CanmetENERGY of Natural Resources Canada will result from this project, including data sharing and researcher interaction. Moreover, the research and education plans offer exciting opportunities to promote cross-campus collaboration among two campuses within the University of Massachusetts system. The participation of women and underrepresented minorities in engineering will be increased by the activities in this project. The computational tools developed in this project will be utilized in the Computer Girl Power summer camp at UMass Dartmouth. Undergraduate RAs will be recruited using the NSF-funded LSAMP program at UMass Amherst and from UMass Dartmouth?s diverse population of undergraduates, 40% of whom are underrepresented in the sciences. An extensive dissemination plan has been developed to educate the general public about issues of wind energy and icing in cold climates, including using public radio and YouTube.
PI: Raessi, Mehdi / Lackner, MatthewProposal Number: 1336232 / 1336502Institution: University of Massachusetts, Dartmouth / University of Massachusetts AmherstTitle: Collaborative Research: Analysis and design of textured super-hydrophobic surfaces capable of preventing ice formation on wind turbine bladesWind energy is a clean, renewable, and domestic energy source that is在美国丰富,尤其是在冰形成很常见的寒冷气候中。在美国和国际上,在寒冷气候中产生可再生风能的潜力都是巨大的。但是,寒冷气候中的当前风能容量仅为500兆瓦,这主要是由于在这些地点在这些地点带来的挑战所带来的挑战,这具有许多有害的影响。迄今为止的缓解工作在降低冰的积累方面取得了适度的成功,但降低了效率。该项目的研究目标是通过先进的计算模型更好地理解风力涡轮叶片上冰的形成物理,以调查风力涡轮机翼型的空气动力和使用计算流体动力学和新型的湍流模型利用纹理表面的叶片的空气动力学,最后用于设计,然后以设计质感的超级冰球表面,以防止风力涡轮机的冰上冰淇淋,以防止风力涡轮机造型。该项目旨在通过将PI在风力涡轮机空气动力学,湍流建模以及多相流和凝固中结合在一起,以解决风力涡轮叶片上的重大冰块问题。对纹理质感表面的研究将通过减少冰的形成对风能发展产生变革性的影响,从而提高涡轮机的效率和可靠性。该项目将是第一个研究的研究,是第一个研究质感的超级流质表面的性能,是在现实情况下围绕着纹理型的,以及设计有纹理的曲目,并设计了曲目,并设计了构造质感的曲目,这些效率是构成曲目的效果。刀片。通过考虑到计算模拟中刀片周围的局部流场,我们将根据刀片和水滴的相对速度来最佳设计纹理模式,以实现最有效的超级冰球表面。此外,将使用将使用的CFD工具在分析风力涡轮机翼和叶片空气动力学的目前状态中代表了重大进展。这项工作将创建一个计算框架,该计算框架使用用于复杂物理的湍流模型(包括过渡,分离,3D边界层和旋转),该模型发生在风力涡轮机叶片上,尤其是那些具有质感冰表面的湍流模型。这些预期的结果将为分析和设计能够在寒冷的环境中运行的独特冰层叶片表面提供必要的预测能力,从而使这些地区的风能发展增加,从而使研究和学生教育目标在美国和国际上增加可再生能源的生产来使社会受益。与加拿大自然资源的Canmetenergy建立了国际合作伙伴关系,这将是由该项目造成的,包括数据共享和研究人员的互动。此外,研究和教育计划为促进马萨诸塞大学系统内两个校园之间的跨校园合作提供了令人兴奋的机会。该项目的活动将增加妇女和代表性不足的工程少数群体的参与。该项目开发的计算工具将用于UMass Dartmouth的计算机女子强大夏令营。将使用UMass Amherst的NSF资助的LSAMP计划,以及来自UMass Dartmouth的本科生的多样化的本科生,其中40%的科学人数不足。已经制定了广泛的传播计划,以教育普通公众在寒冷的气候下,包括使用公共广播和YouTube的风能和结冰问题。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clean, green, and just? Community perspectives on the renewable energy transition in a New England city
清洁、绿色、公正?
- DOI:10.1016/j.sctalk.2023.100188
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Harper, Krista;Bates, Alison;Nwadiaru, Ogechi Vivian;Cantor, Julia;Cowan, Makaylah;Shokooh, Marina Pineda
- 通讯作者:Shokooh, Marina Pineda
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Lackner其他文献
Matthew Lackner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Lackner', 18)}}的其他基金
Enhancing Resiliency and Increasing Equity in the Transition to a Sustainable Energy Future
在向可持续能源未来转型的过程中增强弹性并增加公平性
- 批准号:
2021693 - 财政年份:2020
- 资助金额:
$ 25.64万 - 项目类别:
Standard Grant
GCR: The Transition to a Sustainable Energy Future
GCR:向可持续能源未来的过渡
- 批准号:
2020888 - 财政年份:2020
- 资助金额:
$ 25.64万 - 项目类别:
Continuing Grant
相似国自然基金
基于多算法组合协作的城市空中交通建模分析与优化管控研究
- 批准号:72301278
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
考虑工效学风险的人机协作生产线建模分析和任务分配研究
- 批准号:72301166
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向实时视频分析的端云协作无服务器计算资源管理方法研究
- 批准号:62302292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于社会-行为-认知-情感的在线协作角色互动分析与干预研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
双螺旋协作学习过程多模态分析与全息数字画像及精准干预研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
- 批准号:
2400111 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
- 批准号:
2400115 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
- 批准号:
2400112 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
- 批准号:
2344795 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Standard Grant