Collaborative Research: Conference: Brazos Analysis Seminar

合作研究:会议:Brazos 分析研讨会

基本信息

  • 批准号:
    2400112
  • 负责人:
  • 金额:
    $ 1.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

This award provides three years of funding to help defray the expenses of participants in the semi-annual conference series "Brazos Analysis Seminar" 2024-2026, the first meeting of which will be held in Spring 2024 at Texas Christian University. Subsequent meetings will rotate among the University of Texas at Austin, University of Houston, Texas A&M University, and Baylor University. The Brazos Analysis Seminar will bring together analysts at academic institutions within the South-Central region of the United States on a regular basis to communicate their research, with a particular emphasis on providing an opportunity for young researchers and graduate students to meet, collaborate and disseminate their work on a regular basis during the academic year. The format for the seminar provides ample opportunity for graduate students, postdocs, and junior investigators to present their work, start new collaborations, learn about the latest developments in modern analysis, and to advance their careers. The scientific topics of this conference series will focus on the analytic theory of operator algebras and operator space theories and their connections to harmonic analysis, ergodic theory, dynamic systems, and the quantum information theory. These include free probability method in the study of quantum groups, Fourier multipliers theory on noncommutative Lp spaces, dynamical system, and K-theory of C*-algebras and von Neumann algebras. In each meeting, there will be 3 plenary talks given by prominent experts and 6 contributed talks presented by 3 experts from the region, and 3 postdoctoral or upper level PhD students. The goal is to keep both junior and senior researchers in the south-central institutions exposed and informed of the latest major mathematical developments in noncommutative Analysis, and to enhance and advance the research on the related topics. Additional information is available on the seminar website https://sites.google.com/site/brazosanalysisseminar.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhizhang Xie其他文献

A relative index theorem for incomplete manifolds and Gromov’s conjectures on positive scalar curvature
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhizhang Xie
  • 通讯作者:
    Zhizhang Xie
Dihedral rigidity for submanifolds of warped product manifolds
翘曲产品流形的子流形的二面刚度
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinmin Wang;Zhizhang Xie
  • 通讯作者:
    Zhizhang Xie
A quantitative relative index theorem and Gromov's conjectures on positive scalar curvature

Zhizhang Xie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhizhang Xie', 18)}}的其他基金

K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
  • 批准号:
    2247322
  • 财政年份:
    2023
  • 资助金额:
    $ 1.64万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: The Hypoelliptic Laplacian, Noncommutative Geometry, and Applications to Representations and Singular Spaces
FRG:合作研究:亚椭圆拉普拉斯、非交换几何以及在表示和奇异空间中的应用
  • 批准号:
    1952693
  • 财政年份:
    2020
  • 资助金额:
    $ 1.64万
  • 项目类别:
    Standard Grant
Young Mathematicians in C*-Algebras 2020
青年数学家 C*-代数 2020
  • 批准号:
    2000335
  • 财政年份:
    2020
  • 资助金额:
    $ 1.64万
  • 项目类别:
    Standard Grant
International Workshop on Operator Theory and its Applications 2018
2018年算子理论及其应用国际研讨会
  • 批准号:
    1800780
  • 财政年份:
    2018
  • 资助金额:
    $ 1.64万
  • 项目类别:
    Standard Grant
K-theory of Operator Algebras and Invariants of Elliptic Operators
算子代数的K理论和椭圆算子不变量
  • 批准号:
    1800737
  • 财政年份:
    2018
  • 资助金额:
    $ 1.64万
  • 项目类别:
    Standard Grant
K-theory of operator algebras and invariants of elliptic operators
算子代数的 K 理论和椭圆算子不变量
  • 批准号:
    1500823
  • 财政年份:
    2015
  • 资助金额:
    $ 1.64万
  • 项目类别:
    Standard Grant

相似国自然基金

会议培训类:“亚洲生态环境保护:古记录研究的机遇与挑战”国际会议
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    9 万元
  • 项目类别:
董事会会议形式的公司治理效应研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
会议培训类 –生活源排放的环境行为和效应研究培训
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    9 万元
  • 项目类别:
大型会议场馆室内复杂情况下未知信号干扰源三维因子图建模及其定位方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
"天然新药素材活性研究"双边会议
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    6 万元
  • 项目类别:

相似海外基金

Collaborative Research: Conference: Strategies to Mitigate Implicit Bias and Promote an Ethos of Care in the Research Enterprise: A Convening
协作研究:会议:减轻隐性偏见并促进研究企业关怀精神的策略:召开会议
  • 批准号:
    2324401
  • 财政年份:
    2024
  • 资助金额:
    $ 1.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 1.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
  • 批准号:
    2350344
  • 财政年份:
    2024
  • 资助金额:
    $ 1.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: 2024 Aspiring PIs in Secure and Trustworthy Cyberspace
协作研究:会议:2024 年安全可信网络空间中的有抱负的 PI
  • 批准号:
    2404952
  • 财政年份:
    2024
  • 资助金额:
    $ 1.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411529
  • 财政年份:
    2024
  • 资助金额:
    $ 1.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了