CAREER: Hierarchical Models for Spatial Extremes
职业:空间极值的层次模型
基本信息
- 批准号:2001433
- 负责人:
- 金额:$ 31.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Rare events can have crippling effects on economies, infrastructure, and human health and well being. But in order to make sound decisions, understanding how large the most severe events are likely to be is imperative. The PI will focus on developing statistical tools for understanding the spatial structure of the most extreme events. These new tools will improve on existing models because they will be both more realistic and more computationally tractable. The PI will also apply these tools to help scientists and policymakers study risks posed by severe environmental phenomena like inland floods, wildfires, and coastal storm surges. Furthermore, the PI will organize workshops to foster closer integration of statistical and Earth science research, as well as develop graduate courses and a textbook focused on modern statistical methods for Earth science.The PI will develop stochastic models for extreme events in space that are 1) flexible enough to transition across different classes of extremal dependence, and 2) permit inference through likelihood functions that can be computed for large datasets. It will accomplish these modeling goals by representing stochastic dependence relationships conditionally, which will induce desirable tail dependence properties and allow efficient inference through Markov chain Monte Carlo (MCMC). The first research component will develop sub-asymptotic models for spatial extremes using max-infinitely divisible (max-id) processes, a generalization of the limiting max-stable class of processes, based on a conditional representation. The second research component will develop sub-asymptotic spatial models for extremes based on scale mixtures of spatial Gaussian processes. The PI will conduct closely interwoven computational development and theoretical explication of the joint tail dependence that the proposed hierarchically specified max-id and scale mixture processes induce. Finally, the PI will apply these models to problems of high societal impact, such as extreme precipitation risk, wildfire susceptibility, and coastal storm surge exposure. The PI will enhance connections between extreme value statisticians and communities of climate and atmospheric scientists, mitigation researchers, and stakeholders, through 1) biannual international workshops on weather and climate extremes, 2) a Ph.D. level course in spatial statistics which will include new advances and applications of spatial extremes, and 3) writing the textbook Modern Statistics for Earth Scientists. The PI also will add modules on extremes to Penn State's Sustainable Climate Risk Management (SCRiM) summer school, and contribute to SCRiM's electronic resources and interactive teaching materials for educators, decision makers, underrepresented groups, and the general public. The PI will strengthen existing collaborations with government agencies which are responsible for communicating and mitigating risk to the public posed by extremal environment phenomena.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
罕见事件可能会对经济、基础设施以及人类健康和福祉产生严重影响。但为了做出正确的决策,了解最严重的事件可能有多大是至关重要的。该项目负责人将重点开发统计工具,以了解最极端事件的空间结构。这些新工具将改进现有模型,因为它们更加现实且更易于计算处理。 PI 还将应用这些工具来帮助科学家和政策制定者研究内陆洪水、野火和沿海风暴潮等严重环境现象带来的风险。此外,PI 将组织研讨会,以促进统计和地球科学研究的更紧密结合,并开发研究生课程和一本专注于地球科学现代统计方法的教科书。PI 将为太空中的极端事件开发随机模型,其中 1 ) 足够灵活,可以在不同类别的极值依赖性之间进行转换,并且 2) 允许通过可针对大型数据集计算的似然函数进行推理。 它将通过有条件地表示随机依赖关系来实现这些建模目标,这将产生理想的尾部依赖特性,并允许通过马尔可夫链蒙特卡罗(MCMC)进行有效的推理。第一个研究部分将使用最大无限可分(max-id)过程开发空间极值的亚渐近模型,这是基于条件表示的限制最大稳定类过程的概括。 第二个研究部分将基于空间高斯过程的尺度混合开发极值的亚渐近空间模型。 PI 将进行紧密交织的计算开发和联合尾部依赖性的理论解释,该联合尾部依赖性是所提出的分层指定的最大 ID 和尺度混合过程引起的。 最后,PI 将把这些模型应用于具有高度社会影响的问题,例如极端降水风险、野火敏感性和沿海风暴潮暴露。 PI 将通过 1) 每两年一次的天气和气候极端事件国际研讨会,2) 博士学位,加强极值统计学家与气候和大气科学家、缓解研究人员和利益相关者之间的联系。空间统计水平课程,其中包括空间极值的新进展和应用,3)为地球科学家编写《现代统计》教科书。 该 PI 还将为宾夕法尼亚州立大学可持续气候风险管理 (SCRiM) 暑期学校添加有关极端情况的模块,并为 SCRiM 的电子资源和互动教材做出贡献,供教育工作者、决策者、代表性不足的群体和公众使用。 PI 将加强与负责沟通和减轻极端环境现象对公众造成的风险的政府机构的现有合作。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extreme Value-Based Methods for Modeling Elk Yearly Movements
基于极值的麋鹿年度活动建模方法
- DOI:10.1007/s13253-018-00342-2
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:Wijeyakulasuriya, Dhanushi A.;Hanks, Ephraim M.;Shaby, Benjamin A.;Cross, Paul C.
- 通讯作者:Cross, Paul C.
Hierarchical Transformed Scale Mixtures for Flexible Modeling of Spatial Extremes on Datasets With Many Locations
用于对多位置数据集进行空间极值灵活建模的分层变换尺度混合
- DOI:10.1080/01621459.2020.1858838
- 发表时间:2022-07
- 期刊:
- 影响因子:3.7
- 作者:Zhang, Likun;Shaby, Benjamin A.;Wadsworth, Jennifer L.
- 通讯作者:Wadsworth, Jennifer L.
Reference Priors for the Generalized Extreme Value Distribution
广义极值分布的参考先验
- DOI:10.5705/ss.202021.0258
- 发表时间:2024-01
- 期刊:
- 影响因子:1.4
- 作者:Zhang, Likun;Shaby, Benjamin A.
- 通讯作者:Shaby, Benjamin A.
A Vecchia approximation for high-dimensional Gaussian cumulative distribution functions arising from spatial data
空间数据产生的高维高斯累积分布函数的 Vecchia 近似
- DOI:10.1080/00949655.2021.2016759
- 发表时间:2022-06
- 期刊:
- 影响因子:1.2
- 作者:Nascimento, Mauricio;Shaby, Benjamin A.
- 通讯作者:Shaby, Benjamin A.
Uniqueness and global optimality of the maximum likelihood estimator for the generalized extreme value distribution
广义极值分布最大似然估计的唯一性和全局最优性
- DOI:10.1093/biomet/asab043
- 发表时间:2021-08
- 期刊:
- 影响因子:2.7
- 作者:Zhang, Likun;Shaby, Benjamin A
- 通讯作者:Shaby, Benjamin A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Shaby其他文献
Benjamin Shaby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Shaby', 18)}}的其他基金
Collaborative Research: Combining Heterogeneous Data Sources to Identify Genetic Modifiers of Diseases
合作研究:结合异质数据源来识别疾病的遗传修饰因素
- 批准号:
2309825 - 财政年份:2023
- 资助金额:
$ 31.4万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 31.4万 - 项目类别:
Continuing Grant
Collaborative Research: Combining Heterogeneous Data Sources to Identify Genetic Modifiers of Diseases
合作研究:结合异质数据源来识别疾病的遗传修饰因素
- 批准号:
2223133 - 财政年份:2022
- 资助金额:
$ 31.4万 - 项目类别:
Continuing Grant
Workshop on Risk Analysis for Extremes in the Earth System
地球系统极端事件风险分析研讨会
- 批准号:
1932751 - 财政年份:2019
- 资助金额:
$ 31.4万 - 项目类别:
Standard Grant
CAREER: Hierarchical Models for Spatial Extremes
职业:空间极值的层次模型
- 批准号:
1752280 - 财政年份:2018
- 资助金额:
$ 31.4万 - 项目类别:
Continuing Grant
Workshop on Climate and Weather Extremes
气候和极端天气研讨会
- 批准号:
1651714 - 财政年份:2016
- 资助金额:
$ 31.4万 - 项目类别:
Standard Grant
相似国自然基金
面向复杂场景的非线性多智能体系统一致性分层控制与优化
- 批准号:62303393
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自分层结构的吸波涂层设计及吸波-耐腐蚀性能调控机制
- 批准号:52372103
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新泵控主驱/横拉杆辅控式多轴电液转向的精准轨迹跟踪机理与分层控制
- 批准号:52375046
- 批准年份:2023
- 资助金额:55 万元
- 项目类别:面上项目
二步分层李群上的Hardy不等式及相关问题研究
- 批准号:12301145
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多源干扰下非同元次系统的复合分层控制及在永磁同步电机伺服系统的应用
- 批准号:62303116
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Hierarchical Models for Spatial Extremes
职业:空间极值的层次模型
- 批准号:
1752280 - 财政年份:2018
- 资助金额:
$ 31.4万 - 项目类别:
Continuing Grant
CAREER: Hierarchical Probabilistic Models for Networks with Rich Data in Scientific Domains
职业:科学领域中具有丰富数据的网络的分层概率模型
- 批准号:
1452718 - 财政年份:2015
- 资助金额:
$ 31.4万 - 项目类别:
Continuing Grant
CAREER: Hierarchical Mechanical Models of Cell Constructs
职业:细胞结构的分层力学模型
- 批准号:
1254609 - 财政年份:2013
- 资助金额:
$ 31.4万 - 项目类别:
Continuing Grant
CAREER: Object Recognition with Hierarchical Models
职业:使用分层模型进行物体识别
- 批准号:
1215812 - 财政年份:2011
- 资助金额:
$ 31.4万 - 项目类别:
Continuing Grant
CAREER: Scalable Computer Architectures of Hierarchical Noeoctex Models and K-12 Education Enhancement
职业:分层 Noeoctex 模型的可扩展计算机架构和 K-12 教育增强
- 批准号:
1053149 - 财政年份:2009
- 资助金额:
$ 31.4万 - 项目类别:
Continuing Grant