Collaborative Research: Self-circulating, self-regulating microreactor for on-chip gas generation from liquid reactants
合作研究:用于从液体反应物产生片上气体的自循环、自调节微反应器
基本信息
- 批准号:1264739
- 负责人:
- 金额:$ 19.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Likun Zhu(1), Huidan Yu (1), Desheng Men(2), Craig R. Friedrich(2)Institutions: (1) Indiana University, (2) Michigan Technological UniversityProposal Numbers: (1) 1264739 and (2) 1264549Title: Collaborative Research: Self-circulating, self-regulating microreactor for on-chip gas generation from liquid reactantsGeneration and handling of gaseous species with reduced parasitic power consumption and parasitic mass has been a growing challenge in many types of chemical reactors, including micro power sources, on-chip cell culturing systems, gas-liquid synthesis, micro flame ionization detectors, solar water splitting systems, and microbial electrolysis cells (MEC). To address this challenge, a self-circulating, self-regulating mechanism is proposed to generate gaseous species from liquid reactants on demand. The system involves little or zero parasitic power consumption and needs no discrete control system for regulation.Intellectual MeritThis work seeks to understand the process control and dynamics of an integrated microfluidic gas generator with self-circulation and self-regulation functionalities. This work is expected to establish the engineering and scientific foundation for highly-efficient, autonomous, on-demand gas generation systems for many applications. To achieve this objective, the research efforts will first be focused on fundamental understanding of the reactive multiphase flow in a microfluidic network with the proposed self-regulation, self-circulation mechanism. Catalytic decomposition of hydrogen peroxide will be employed as a basic model system to perform the fundamental studies. The dynamics of bubble-driven liquid circulation, self-regulation, mechanism of gas/liquid separation, and reactant utilization will be experimentally investigated. A comprehensive lattice Boltzmann method (LBM) model will be used to study the physics in the gas generator. Bubble dynamics is a focus for the numerical study. The LBM model and the related numerical simulation will be used to provide benchmarks for the experiments and to guide future designs. The micro reactor configuration will then be tested on two applications: high-performance small fuel cells for portable electronics and energy reclamation/treatment of waste water by MECs. The issues related to these two particular applications will be used to establish the foundation for future commercialization.Broader ImpactEfficient management and utilization of multiphase flow in microreactors have a broad range of applications. The successful implementation of this research could directly facilitate the development of high-energy-density power generation devices based on fuel cells, where hydrogen storage and delivery remain major technical challenges. The proposed approach may help overcome this problem by achieving autonomous pumping and control for on-demand hydrogen generation with little burden on system complexity and packaging. The work could also benefit a series of portable applications, such as portable electronics, implanted biomedical devices, and distributed microsystems with wireless communication capability. In addition, it could also benefit the development of scalable microbial electrolysis cells for hydrogen generation from renewable energy sources, while cleaning up waste water before its discharge. It is expected to further inspire similar approaches in on-chip cell culturing systems, micro flame ionization detector, solar water splitting systems, etc. Educational efforts will benefit through the involvement of minority students from the local community. Summer camps will be organized on both campuses to provide local high school students an opportunity to explore the interdisciplinary fields of micro/nanotechnology.
PI: Likun Zhu(1), Huidan Yu (1), Desheng Men(2), Craig R. Friedrich(2) 院校:(1) 印第安纳大学,(2) 密歇根理工大学 提案编号:(1) 1264739 和 (2) )1264549标题:合作研究:用于从液体反应物产生片上气体的自循环、自调节微反应器的生成和处理在许多类型的化学反应器中,降低寄生功耗和寄生质量的气态物种一直是一个日益严峻的挑战,包括微电源、片上细胞培养系统、气液合成、微火焰离子化探测器、太阳能水分解系统、和微生物电解池(MEC)。为了应对这一挑战,提出了一种自循环、自调节机制,可根据需要从液体反应物中产生气态物质。该系统的寄生功耗很小或为零,并且不需要离散控制系统进行调节。智力优点这项工作旨在了解具有自循环和自调节功能的集成微流体气体发生器的过程控制和动态。这项工作预计将为许多应用的高效、自主、按需气体发生系统奠定工程和科学基础。为了实现这一目标,研究工作将首先集中于对微流体网络中反应性多相流的基本理解以及所提出的自调节、自循环机制。过氧化氢的催化分解将被用作基本模型系统来进行基础研究。将通过实验研究气泡驱动液体循环的动力学、自调节、气/液分离机制和反应物利用。综合格子玻尔兹曼方法(LBM)模型将用于研究气体发生器中的物理现象。气泡动力学是数值研究的焦点。 LBM模型和相关数值模拟将用于为实验提供基准并指导未来的设计。然后,微型反应器配置将在两种应用中进行测试:用于便携式电子产品的高性能小型燃料电池和 MEC 的能量回收/废水处理。与这两个特定应用相关的问题将用于为未来的商业化奠定基础。更广泛的影响微反应器中多相流的有效管理和利用具有广泛的应用。这项研究的成功实施可以直接促进基于燃料电池的高能量密度发电装置的开发,其中氢的储存和输送仍然是主要的技术挑战。所提出的方法可以通过实现按需制氢的自主泵送和控制来帮助克服这个问题,而对系统复杂性和封装的负担很小。这项工作还可以使一系列便携式应用受益,例如便携式电子产品、植入式生物医学设备以及具有无线通信功能的分布式微系统。此外,它还有利于开发可扩展的微生物电解电池,用于利用可再生能源产生氢气,同时在废水排放前对其进行净化。预计它将进一步激发片上细胞培养系统、微火焰离子化检测器、太阳能水分解系统等领域的类似方法。当地社区少数民族学生的参与将受益于教育工作。两个校区都将举办夏令营,为当地高中生提供探索微纳米技术跨学科领域的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Likun Zhu其他文献
Gaussian process-based prognostics of lithium-ion batteries and design optimization of cathode active materials
基于高斯过程的锂离子电池预测和正极活性材料的设计优化
- DOI:
10.1016/j.jpowsour.2022.231026 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:9.2
- 作者:
H. Valladares;Tianyi Li;Likun Zhu;H. El;A. Hashem;A. Abdel;A. Tovar - 通讯作者:
A. Tovar
Operando Investigation of Energy Storage Material by FIB-SEM System
利用 FIB-SEM 系统对储能材料进行操作研究
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.8
- 作者:
Xinwei Zhou;Likun Zhu;Yuzi Liu - 通讯作者:
Yuzi Liu
Blade-Type Reaction Front in Micrometer-sized Germanium Particles during Lithiation.
锂化过程中微米级锗颗粒的叶片式反应前沿。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:9.5
- 作者:
Xinwei Zhou;Tianyi Li;Yi Cui;M. Meyerson;J. Weeks;C. Mullins;Yang Jin;Ho;Yuzi Liu;Likun Zhu - 通讯作者:
Likun Zhu
Stress- and Interface-Compatible Red Phosphorus Anode for High-Energy and Durable Sodium-Ion Batteries
用于高能耐用钠离子电池的应力和界面兼容红磷阳极
- DOI:
10.1021/acsenergylett.0c02650 - 发表时间:
2021-01-15 - 期刊:
- 影响因子:22
- 作者:
Xiang Liu;B. Xiao;Amine Daali;Xinwei Zhou;Zhou Yu;Xiang Li;Yuzi Liu;Liang Yin;Zhenzhen Yang;Chen Zhao;Likun Zhu;Yang Ren;Lei Cheng;Shabbir Ahmed;Zonghai Chen;X. Li;Gui‐Liang Xu;K. Amine - 通讯作者:
K. Amine
Integrated micro fuel cell with on-demand hydrogen production and passive control MEMS
具有按需制氢和被动控制 MEMS 的集成微型燃料电池
- DOI:
10.1007/s10404-011-0916-0 - 发表时间:
2011-12-02 - 期刊:
- 影响因子:2.8
- 作者:
V. Swaminathan;Likun Zhu;B. Gurau;R. Masel;M. Shannon - 通讯作者:
M. Shannon
Likun Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Likun Zhu', 18)}}的其他基金
Collaborative Research: Fundamental understanding of interface dynamics in solid electrolyte batteries with liquid metal anode
合作研究:对液态金属阳极固体电解质电池界面动力学的基本了解
- 批准号:
2323474 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of chalcogenide-doped high capacity lithium-ion battery anode materials during cycling using in situ imaging
合作研究:利用原位成像研究硫属化物掺杂高容量锂离子电池负极材料在循环过程中的动力学
- 批准号:
1603847 - 财政年份:2016
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Computed tomography image-based study for understanding the impact of electrode microstructure on lithium ion battery performance
基于计算机断层扫描图像的研究,用于了解电极微观结构对锂离子电池性能的影响
- 批准号:
1335850 - 财政年份:2013
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
相似国自然基金
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
“为自己的健康负责”——基于当责视角的健康管理APP对用户行为的作用机制研究
- 批准号:72302199
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
燃烧自己照亮团队:资源流动视角下服务型领导对团队和自身的影响效应及机制研究
- 批准号:71902070
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: A User-Interactive Approach to Water Management for Sustainable Data Centers: From Water Efficiency to Self-Sufficiency
合作研究:DESC:类型 I:可持续数据中心水资源管理的用户交互方法:从用水效率到自给自足
- 批准号:
2324916 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
- 批准号:
2309591 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant